КАТАЛОГ ТОВАРОВ

Срок доставки товара в течении 1-3 дней !!!

 

ПОЛЬЗОВАТЕЛЬ
КОРЗИНА

Правильный подбор комплектующих для ПК. Процессор подобрать по параметрам


▷ Как выбрать процессоры - в ✔ E-katalog.ru ✔ , советы по выбору, характеристики в каталоге процессоров

Комплектуется кулером

Наличие кулера в комплекте поставки процессора. Подобная комплектация удобна тем, что пользователю не нужно отдельно искать подходящий кулер: комплектная система охлаждения изначально совместима с процессором и ее эффективность соответствует тепловыделению CPU.

Серия

Серия, к которой относится процессор. Чипы в пределах одной серии могут различаться по конкретным характеристикам, однако неизбежно имеют некоторые общие особенности.

— Sempron. Серия процессоров бюджетного уровня производства AMD, одна из самых простых и доступных линеек среди всех настольных чипов данного производителя.

— A-Series. Общее название для нескольких серий гибридных процессоров от AMD, позиционируемых как APU — Accelerated Processing Unit, решения с продвинутой интегрированной графикой. Подробнее см. «AMD Fusion A4» ниже; эта серия, как и остальные Fusion A, также относятся к A-series.

— EPYC. Серия профессиональных процессоров от AMD, предназначенных преимущественно для серверов; позиционируются, в частности, как решения, оптимизированные для применения в облачных сервисах. Построены на микроархитектуре Zen, так же, как и настольные Ryzen (см. ниже).

— Athlon X2. Процессоры производства AMD, первая в мире серия процессоров двухъядерной архитектуры. В наиболее продвинутых моделях есть кэш третьего уровня.

— Athlon II. Многоядерные процессоры производства AMD, созданные как более дешевая альтернатива производительным Phenom II — в отличии от них, не имеют кэша третьего уровня.

— Athlon X4. Серия бюджетных процессоров потребительского уровня, изначально выпущенная в 2015 году как сравнительно недорогие и в то же время п...роизводительные решения под сокет FM+.

— FX. Семейство высококлассных производительных процессоров от AMD, первая в мире серия, представившая восьмиядерный процессор для ПК. Впрочем, есть и относительно скромные четырехъядерные. Еще одна особенность — жидкостное охлаждение, штатно входящее в комплект поставки некоторых моделей: классического воздушного бывает недостаточно с учётом высокой мощности и соответствующего TDP (см. ниже).

— AMD Fusion A4. Все семейство процессоров Fusion изначально было создано как устройства с интегрированной графикой, объединяющие в одном чипе центральный процессор и видеокарту; такие чипы называют APU — Accelerated Processing Unit. Серии с индексом «A» оснащаются наиболее мощной в семействе встроенной графикой, способной в некоторых случаях на равных конкурировать с недорогими дискретными видеокартами. Чем больше цифра в индексе серии — тем более продвинутой она является; A4 — самая скромная серия среди Fusion A.

— AMD Fusion A6. Серия процессоров из линейки Fusion A, относительно скромная, однако несколько более продвинутая, чем A4. Об общих особенностях всех Fusion A см. «AMD Fusion A4» выше.

— AMD Fusion A8. Одна из наиболее производительных серий в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

— AMD Fusion A10. Одна из топовых серий процессоров в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

— Ryzen 3. Третья по счету серия процессоров от AMD, построенных на микроархитектуре Zen (после Ryzen 7 и Ryzen 5). Первые чипы этой серии были выпущены летом 2017 года и стали самыми бюджетными решениями среди всех Ryzen. Выпускаются они по тем же технологиям, что и старшие серии, однако в Ryzen 3 деактивирована половина вычислительных ядер. Тем не менее, данная линейка включает довольно производительные устройства, рассчитанные в том числе на игровые конфигурации и рабочие станции.

— Ryzen 5. Серия процессоров от AMD, построенная на микроархитектуре Zen. Вторая по счету серия на этой архитектуре, выпущенная в апреле 2017 года как более доступная альтернатива чипам Ryzen 7. Чипы Ryzen 5 имеют несколько более скромные рабочие характеристики (в частности, меньшую тактовую частоту и, в некоторых моделях, объем кэша L3). В остальном они полностью аналогичны «семеркам» и также позиционируются как высокопроизводительные чипы для игровых и рабочих станций. Подробнее см. «Ryzen 7» ниже.

— Ryzen 7. Первая серия процессоров от AMD, построенная на микроархитектуре Zen. Была представлена в марте 2017 года. В целом чипы Ryzen (всех серий) продвигаются как высококлассные решения для геймеров, разработчиков, графических дизайнеров и видеоредакторов. Одним из главных отличий Zen от предыдущих микроархитектур стало использование одновременной многопоточности (см. «SMT (многопоточность)»), за счет чего было значительно увеличено количество операций за такт при той же тактовой частоте. Помимо этого, каждое ядро получило собственный блок вычислений с плавающей точкой, увеличилась скорость работы кэш-памяти первого уровня, а объем кэша L3 в Ryzen 7 штатно составляет 16 МБ.

— Ryzen Threadripper. Серия высокопроизводительных процессоров от AMD, позиционируемая как «решения для игр и творчества»: по утверждению производителей, чипы Threadripper специально разработаны для высокопроизводительных геймерских систем и рабочих станций. Имеют от 8 ядер и поддерживают многопоточность.

— Ryzen 3 PRO. Модифицированная версия чипов серии Ryzen 3 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 5 PRO. Модифицированная версия чипов серии Ryzen 5 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 7 PRO. Модифицированная версия чипов серии Ryzen 7 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— AMD E-серия. Эта серия процессоров относится к APU, как и описанные выше Fusion A, однако принципиально отличается по специализации: основной сферой применения E-Series являются компактные устройства, в случае ПК — в основном неттопы (см. «Тип»). Соответственно, эти процессоры характеризуются компактностью, невысоким тепловыделением и энергопотреблением, однако их вычислительная мощь также невысока.

— Phenom. Серия производительных процессоров разработки AMD. Выделяются, в частности, многоядерностью – абсолютное большинство моделей выполнено по трёх- либо четырехъядерной архитектуре.

— Phenom II. Второе поколение производительных многоядерных процессоров от AMD. Имеют от двух до шести ядер.

— Opteron. Серия продвинутых процессоров разработки AMD, рассчитанных на применение прежде всего в серверах. Ключевые особенности — многоядерность (количество ядер может достигать 12) и одинаково высокая скорость при работе как с 32-, так и с 64-битными приложениями.

— Celeron. Процессоры бюджетного уровня, наиболее простые и недорогие десктопные чипы потребительского уровня от Intel, с соответствующими характеристиками. Тем не менее, нередко сочетают CPU со встроенным графическим модулем; особенно это характерно для последних поколений.

— Celeron D. Модифицированная версия бюджетных процессоров Celeron от Intel. Отличаются повышенной тактовой частотой, а также увеличенным объемом кэша второго уровня.

— Pentium. Серия бюджетных настольных процессоров от Intel, несколько более продвинутая, чем Celeron, однако уступающая моделям из серий Core i* (см. ниже).

— Pentium 4. Серия процессоров нижней ценовой категории от Intel. Имеют всего одно ядро. Относятся к устаревшим, на данный момент сняты с производства.

— Pentium D. Серия недорогих процессоров от Intel, преимущественно двухъядерных. Последнее поколение Pentium D было представлено в 2006 году, с тех пор они не выпускаются.

— Core 2 Duo. Двухъядерные процессоры, на момент выпуска относящиеся к среднему уровню. Последнее поколение Core 2 Duo было представлено в 2007 году, на сегодня эта серия окончательно устарела.

— Core 2 Extreme. Серия, включающая процессоры Core 2 Duo и Quad (см. выше) с улучшенной производительностью и расширенными возможностями разгона, включая свободный множитель. Сняты с производства.

— Core 2 Quad. Серия процессоров, во многом аналогичная описанным выше Core 2 Duo (включая хронологию выпуска). Фактически каждый чип состоял из пары Core 2 Duo в одном корпусе, обеспечивая таким образом повышенную производительность. Также являются устаревшими.

— Core i3. Серия процессоров начального и среднего уровня, наиболее бюджетная серия в семействе Core ix. Выполнены на основе двухъядерной архитектуры, имеют кэш третьего уровня и встроенный графический процессор.

— Core i5. Серия процессоров среднего класса как вообще, так и в семействе Core ix. Архитектура двух- либо четырехъядерная, имеют кэш третьего уровня, многие модели также оснащены встроенным графическим чипом.

— Core i7. Серия производительных процессоров; до появления линейки i9 в мае 2017 года были самыми продвинутыми в семействе Core ix. Имеют не менее 4 ядер (в топовых решениях — до 8), объемный кэш 3 уровня и встроенную графику.

— Core i9. Высокопроизводительные настольные процессоры, представленные в 2017 году; самая продвинутая серия в семействе Core ix и самая мощная линейка десктопных CPU потребительского уровня на момент выпуска. Имеют от 10 ядер (от 6 в мобильных версиях) и от 12 МБ кэша L3.

— Xeon. Серия производительных процессоров, предназначенных прежде всего для серверов. Хорошо подходят для работы в многопроцессорных системах. Количество ядер составляет 2, 4 либо 6, многие модели имеют кэш третьего уровня.

Помимо серий, современные процессоры делятся также на поколения, по времени выпуска. При этом одно поколение включает несколько серий, а одна серия может выпускаться в пределах нескольких поколений. Подробнее об этом см. «Архитектура»,

Разъем (Socket)

Тип разъема (сокета) для установки процессора на материнской плате. Для нормальной совместимости необходимо, чтобы CPU и «материнка» совпадали по типу сокета; перед покупкой того и другого этот момент стоит уточнять отдельно

Для процессоров Intel на сегодня актуальны следующие сокеты: S775, S1150, S1155, S1356, S1366, S2011, S2011 v3, S2066, S1151, S1151 Coffee Lake, S3647.

В свою очередь, процессоры AMD оснащаются такими типами разъемов: AM1, AM3/AM3+, FM2/FM2+, AM4, TR4.

Кол-во ядер

Количество физических ядер, предусмотренное в конструкции процессора. Ядро — это часть процессора, отвечающая за выполнение одной последовательности команд; соответственно, наличие нескольких ядер позволяет CPU работать одновременно с несколькими задачами, что положительно сказывается на производительности.

Обычно ядер — четное количество; трехъядерная архитектура встречается относительно редко и является скорее исключением, а одноядерные чипы практически полностью вышли из употребления. В настольных процессорах 2 ядра, как правило, характерны для бюджетных моделей и недорогих решений среднего класса, 4 — для среднего уровня, 6, 8 и более — для продвинутого, включая процессоры для серверов и рабочих станций. В то же время стоит учитывать, что фактические возможности CPU определяются не только данным параметром, но и другими характеристиками — прежде всего серией и поколением / архитектурой (см. соответствующие пункты). Не редкостью являются ситуации, когда, к примеру, более продвинутый и/или новый двухъядерный процессор оказывается мощнее, чем четырёхъядерный чип более скромной серии или более ранней архитектуры. Так что сравнивать CPU по количеству ядер имеет смысл только в пределах одной серии и поколения.

Hyper-threading

Поддержка процессором функции Hyper-threading.

Hyper-threading фактически представляет собой вариант одновременной многопоточности (SMT), разработанный компанией Intel и применяемый в её чипах с 2002 года. Данная технология используется для оптимизации нагрузки на каждое физическое ядро процессора. Её ключевой принцип (упрощённо) заключается в том, что каждое такое ядро определяется системой как 2 логических ядра — например, двухъядерный процессор система «видит» как четырёхъядерный. При этом каждое физическое ядро постоянно переключается между двумя логическими ядрами, по сути — между двумя потоками команд: когда в одном потоке возникает задержка (например, в случае ошибки или в ожидании результата предыдущей инструкции), ядро не простаивает, а приступает к выполнению второго потока команд. Благодаря такой технологии уменьшается время отклика процессора, а в серверных системах — увеличивается стабильность при большом количестве подключённых пользователей.

В процессорах AMD аналогичная функция применяется под оригинальным названием SMT (см. ниже).

SMT (многопоточность)

Поддержка процессором технологии одновременной многопоточности (SMT).

В широком смысле термин SMT охватывает все варианты одновременной многопоточности, однако компания Intel применяет для своих процессоров обозначение «Hyper-threading» (см. выше). Поэтому на рынке обозначение SMT встречается только в чипах AMD; впервые подобные процессоры были представлены в 2017 году в рамках микроархитектуры Zen. Основная цель SMT заключается в том, чтобы максимально устранить простаивания ядер процессора («пустые циклы», когда не выполняется никаких действий). Достигается это следующим образом: физическое ядро процессора «видится» компьютером как два логических ядра, каждое их которых работает со своим потоком команд. Когда в одном из потоков возникает задержка (например, при ожидании результата запроса) — система переключается на другой поток, заполняя паузу и не позволяя ядру простаивать. Благодаря этому повышается фактическое количество инструкций за такт, что даёт значительный прирост скорости и производительности без изменения тактовой частоты (к примеру, для серии Ryzen заявлено увеличение количества инструкций за такт на 40% по сравнению с предыдущим поколением чипов AMD).

Тактовая частота

Количество тактов за секунду, которое выдаёт процессор в штатном рабочем режиме. Тактом называется отдельный электрический импульс, используемый для обработки данных и синхронизации процессора с остальными компонентами компьютерной системы. Различные операции могут требовать как долей такта, так и нескольких тактов, однако в любом случае тактовая частота является одним из основных параметров, характеризующих производительность и скорость работы процессора — при прочих равных характеристиках процессор с более высокой тактовой частотой будет быстрее работать и лучше справляться со значительными нагрузками. В то же время стоит учитывать, что фактическая производительность чипа определяется не только тактовой частотой, но и рядом других характеристик — начиная от серии и архитектуры (см. соответствующие пункты) и заканчивая количеством ядер и поддержкой специальных инструкций. Так что сравнивать по тактовой частоте имеет смысл только чипы со схожими характеристиками, относящиеся к одной серии и поколению.

Частота TurboBoost / TurboCore

Максимальная тактовая частота процессора, достигаемая при работе в режиме разгона Turbo Boost или Turbo Core.

Название «Turbo Boost» используется для технологии разгона, используемой компанией Intel, «Turbo Core» — для решения от AMD. Принцип действия в обоих случаях один: если некоторые ядра не задействованы или работают под нагрузкой ниже максимальной, процессор может перебрасывать на них часть нагрузки с загруженных ядер, повышая таким образом вычислительную мощность и производительность. Работа в таком режиме характерна повышением тактовой частоты, она и указывается в данном случае.

Отметим, что речь идёт о максимально возможной тактовой частоте — современные CPU способны регулировать режим работы в зависимости от ситуации, и при относительно невысокой нагрузке фактическая частота может быть ниже максимально возможной. Об общем значении данного параметра см. «Тактовая частота».

Частота TurboBoost Max 3.0

Тактовая частота процессора при работе в режиме разгона TurboBoost Max 3.0.

Данный режим является своеобразной надстройкой над оригинальным Turbo Boost (см. выше). Основной принцип его работы заключается в том, что самые критичные и «тяжеловесные» задачи отправляются для выполнения на самые быстрые и незагруженные ядра процессора. За счёт этого обеспечивается дополнительная оптимизация работы CPU и повышается его быстродействие. Как и в обычном режиме Turbo Boost, тактовая частота при использовании данной функции увеличивается, поэтому её указывают отдельно.

Техпроцесс

Техпроцесс, по которому изготовлен CPU. Указывается по размеру отдельных полупроводниковых элементов (транзисторов), из которых состоит процессор. Чем меньше этот размер, тем более продвинутым является чип: уменьшение техпроцесса снижает тепловыделение и энергопотребление, а также позволяет предусмотреть на том же кристалле большее количество транзисторов. В свете этого развитие CPU идет именно в сторону уменьшения техпроцесса.

Сегодня на рынке центральных процессоров, кроме современных 14 и 22 нм , все еще можно встретить 28, 32, 45, и даже 65 нм .

Архитектура

Архитектура, по которой построен процессор.

Данный параметр характеризует, во-первых, техпроцесс (см. выше), во-вторых, некоторые особенности внутреннего устройства процессоров. Новая (или хотя бы обновленная) архитектура вводится на рынок вместе с каждым новым поколением CPU; чипы одной архитектуры являются «ровесниками», но могут относиться к разным сериям (см. выше). При этом одно поколение может включать как одну, так и несколько архитектур.

Вот наиболее распространенные на сегодняшний день архитектуры Intel: Skylake (6-е поколение), Kaby Lake (7-е поколение), Skylake-X (7-е поколение), Kaby Lake-X (7-е поколение), Coffee Lake (8-е поколение)

Для AMD, в свою очередь, этот список включает Godavari, Kaveri Richland, Trinity, Vishera, Bristol Ridge, Zen.

Интегрированная графика

Наличие модуля для обработки графики, встроенного непосредственно в процессор. Этот модуль отвечает за вывод изображения на монитор, а необходимая для этого память отбирается из оперативной — таким образом, в одном чипе фактически совмещаются CPU и интегрированная видеокарта. Подобная графика имеет сравнительно невысокую мощность; она вполне подойдёт для несложных задач вроде офисных приложений, Интернет-серфинга, просмотра видео; однако для игр и других задач, требовательных к графике, стоит всё же иметь дискретную видеокарту.

Интегрированное видео с недавних пор предусматривается в большинстве десктопных процессоров; однако встречаются и модели без встроенной графики.

Модель GPU

Модель интегрированного видеоядра, установленного в процессоре. Подробнее о самом ядре см. «Интегрированная графика». А зная название модели графического чипа, можно найти его подробные характеристики и уточнить производительность процессора по работе с видео.

Что касается конкретных моделей, то в процессорах Intel используются, в частности, HD Graphics 510, HD Graphics 530, HD Graphics 610, HD Graphics 630 и UHD Graphics 630. Чипы AMD, в свою очередь, могут нести видеокарты Radeon R5 series, Radeon R7 series и Radeon RX Vega.

1-го уровня L1

Объём кэша 1 уровня (L1), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 1 уровня имеет наибольшее быстродействие и наименьший объём — до 128 Кб. Он является неотъемлемой частью любого процессора.

2-го уровня L2

Объём кэша 2 уровня (L2), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Объём кэша 2 уровня может достигать 12 МБ, такой кэш имеет абсолютное большинство современных процессоров.

3-го уровня L3

Объём кэша 3 уровня (L3), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 3 уровня имеет наименьшее быстродействие и наибольший объём — до 24 МБ; такой кэш обязательно имеется в наиболее продвинутых и производительных моделях, однако есть немало процессоров и без него.

Частота системной шины

Частота системной шины, поддерживаемая процессором, фактически — тактовая частота, на которой происходит обмен данными между процессором и остальной системой.

Данный параметр является ключевым для определения общей тактовой частоты CPU (см. выше): эта частота равняется частоте системной шины, помноженной на множитель (см. ниже).

Тепловыделение (TDP)

Максимальное количество тепла, выделяемое процессором при работе в штатном режиме. Этот параметр определяет требования к системе охлаждения, необходимой для нормальной работы процессора, поэтому иногда его называют TDP — thermal design power, буквально «мощность температурной (охлаждающей) системы». Проще говоря, если процессор имеет тепловыделение в 60 Вт — для него необходима система охлаждения, способная отвести как минимум такое количество тепла. Соответственно чем ниже TDP — тем ниже требования к системе охлаждения. Низкие значения TDP (до 50 Вт) особенно критичны для ПК, в которых нет возможности установить мощные системы охлаждения — в частности, систем в компактных корпусах, куда мощный кулер попросту не поместится.

Поддержка инструкций

Поддержка процессором различных наборов дополнительных команд. Это могут быть инструкции, оптимизирующие работу процессора в целом либо с приложениями определённого типа (например, мультимедийными, или 64-разрядными), предотвращающие запуск на компьютере определённого рода вирусов и т.п. У каждого производителя имеется свой ассортимент инструкций для процессоров.

Множитель

Коэффициент, на основании которого выводится значение тактовой частоты процессора. Последняя вычисляется путём умножения множителя на частоту системной шины (см. Частота системной шины). Например при частоте системной шины 533 МГц и множителе 4 тактовая частота процессора будет составлять приблизительно 2,1 ГГц.

Свободный множитель

Возможность изменять значение множителя (см. Множитель) процессора по собственному желанию. В отличии от оверклокинга («разгона») в его классическом понимании, часто связанного со взломом настроек процессора, свободный множитель даёт возможность «легально» и довольно легко менять тактовую частоту процессора — чаще всего это реализуется через настройки BIOS. При этом не стоит забывать, что увеличенная частота работы процессора требует соответствующей эффективности системы его охлаждения.

Макс. рабочая температура

Максимальная температура, при которой процессор способен эффективно продолжать работу — при нагреве выше этой температуры большинство современных процессоров отключаются, дабы избежать неприятных последствий перегрева (вплоть до сгорания чипа). Чем выше максимальная рабочая температура — тем менее процессор требователен к системе охлаждения, однако мощность охлаждения в любом случае не должна быть ниже TDP (см. Тепловыделение (TDP)).

Макс. объем

Максимальный объём оперативной памяти (RAM), с которым процессор может корректно работать.

Чем больше объём «оперативки» — тем более высокие мощности требуются для корректной работы с ней. Соответственно, любой процессор неизбежно будет ограничен по данному параметру. Впрочем, даже сравнительно скромные современные CPU могут иметь весьма внушительные максимальные объёмы RAM, исчисляемые десятками гигабайт.

Макс. частота DDR3

Наибольшая частота модулей оперативной памяти стандарта DDR3, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки». Что же касается DDR3, то это один из наиболее распространённых современных типов RAM; он постепенно вытесняется более продвинутым DDR4, однако всё ещё весьма популярен.

Макс. частота DDR4

Наибольшая частота модулей оперативной памяти стандарта DDR4, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки».

Стандарт DDR4 был представлен в 2010 году (окончательная версия — в 2012) как наследник популярного DDR3.

Число каналов

Максимальное количество каналов, поддерживаемое процессором при работе с оперативной памятью.

Простейшим режимом для современных ПК является одноканальный (когда весь объём RAM воспринимается как единый массив). Он поддерживается всеми процессорами и материнскими платами. Однако чаще всего встречаются «материнки» на 2 канала, а в более продвинутых моделях это число может достигать 3 или даже 4. Многоканальный режим значительно повышает производительность, однако требует применения специализированных комплектующих, включая процессоры с поддержкой соответствующего числа каналов.

www.e-katalog.ru

▷ Как выбрать процессоры, советы по выбору, характеристики в каталоге процессоров на ▷ EK.ua ◁

Комплектуется кулером

Наличие кулера в комплекте поставки процессора. Подобная комплектация удобна тем, что пользователю не нужно отдельно искать подходящий кулер: комплектная система охлаждения изначально совместима с процессором и ее эффективность соответствует тепловыделению CPU.

Серия

Серия, к которой относится процессор. Чипы в пределах одной серии могут различаться по конкретным характеристикам, однако неизбежно имеют некоторые общие особенности.

— Sempron. Серия процессоров бюджетного уровня производства AMD, одна из самых простых и доступных линеек среди всех настольных чипов данного производителя.

— A-Series. Общее название для нескольких серий гибридных процессоров от AMD, позиционируемых как APU — Accelerated Processing Unit, решения с продвинутой интегрированной графикой. Подробнее см. «AMD Fusion A4» ниже; эта серия, как и остальные Fusion A, также относятся к A-series.

— EPYC. Серия профессиональных процессоров от AMD, предназначенных преимущественно для серверов; позиционируются, в частности, как решения, оптимизированные для применения в облачных сервисах. Построены на микроархитектуре Zen, так же, как и настольные Ryzen (см. ниже).

— Athlon X2. Процессоры производства AMD, первая в мире серия процессоров двухъядерной архитектуры. В наиболее продвинутых моделях есть кэш третьего уровня.

— Athlon II. Многоядерные процессоры производства AMD, созданные как более дешевая альтернатива производительным Phenom II — в отличии от них, не имеют кэша третьего уровня.

— Athlon X4. Серия бюджетных процессоров потребительского уровня, изначально выпущенная в 2015 году как сравнительно недорогие и в то же время п...роизводительные решения под сокет FM+.

— FX. Семейство высококлассных производительных процессоров от AMD, первая в мире серия, представившая восьмиядерный процессор для ПК. Впрочем, есть и относительно скромные четырехъядерные. Еще одна особенность — жидкостное охлаждение, штатно входящее в комплект поставки некоторых моделей: классического воздушного бывает недостаточно с учётом высокой мощности и соответствующего TDP (см. ниже).

— AMD Fusion A4. Все семейство процессоров Fusion изначально было создано как устройства с интегрированной графикой, объединяющие в одном чипе центральный процессор и видеокарту; такие чипы называют APU — Accelerated Processing Unit. Серии с индексом «A» оснащаются наиболее мощной в семействе встроенной графикой, способной в некоторых случаях на равных конкурировать с недорогими дискретными видеокартами. Чем больше цифра в индексе серии — тем более продвинутой она является; A4 — самая скромная серия среди Fusion A.

— AMD Fusion A6. Серия процессоров из линейки Fusion A, относительно скромная, однако несколько более продвинутая, чем A4. Об общих особенностях всех Fusion A см. «AMD Fusion A4» выше.

— AMD Fusion A8. Одна из наиболее производительных серий в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

— AMD Fusion A10. Одна из топовых серий процессоров в линейке Fusion A. Об общих особенностях этой линейки см. «AMD Fusion A4» выше.

— Ryzen 3. Третья по счету серия процессоров от AMD, построенных на микроархитектуре Zen (после Ryzen 7 и Ryzen 5). Первые чипы этой серии были выпущены летом 2017 года и стали самыми бюджетными решениями среди всех Ryzen. Выпускаются они по тем же технологиям, что и старшие серии, однако в Ryzen 3 деактивирована половина вычислительных ядер. Тем не менее, данная линейка включает довольно производительные устройства, рассчитанные в том числе на игровые конфигурации и рабочие станции.

— Ryzen 5. Серия процессоров от AMD, построенная на микроархитектуре Zen. Вторая по счету серия на этой архитектуре, выпущенная в апреле 2017 года как более доступная альтернатива чипам Ryzen 7. Чипы Ryzen 5 имеют несколько более скромные рабочие характеристики (в частности, меньшую тактовую частоту и, в некоторых моделях, объем кэша L3). В остальном они полностью аналогичны «семеркам» и также позиционируются как высокопроизводительные чипы для игровых и рабочих станций. Подробнее см. «Ryzen 7» ниже.

— Ryzen 7. Первая серия процессоров от AMD, построенная на микроархитектуре Zen. Была представлена в марте 2017 года. В целом чипы Ryzen (всех серий) продвигаются как высококлассные решения для геймеров, разработчиков, графических дизайнеров и видеоредакторов. Одним из главных отличий Zen от предыдущих микроархитектур стало использование одновременной многопоточности (см. «SMT (многопоточность)»), за счет чего было значительно увеличено количество операций за такт при той же тактовой частоте. Помимо этого, каждое ядро получило собственный блок вычислений с плавающей точкой, увеличилась скорость работы кэш-памяти первого уровня, а объем кэша L3 в Ryzen 7 штатно составляет 16 МБ.

— Ryzen Threadripper. Серия высокопроизводительных процессоров от AMD, позиционируемая как «решения для игр и творчества»: по утверждению производителей, чипы Threadripper специально разработаны для высокопроизводительных геймерских систем и рабочих станций. Имеют от 8 ядер и поддерживают многопоточность.

— Ryzen 3 PRO. Модифицированная версия чипов серии Ryzen 3 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 5 PRO. Модифицированная версия чипов серии Ryzen 5 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— Ryzen 7 PRO. Модифицированная версия чипов серии Ryzen 7 (см. выше). Производителем заявлен ряд решений по повышению производительности, надежности и защищенности — в частности, улучшенные алгоритмы работы, предиктивный анализ следующих действий системы и оптимизация процессора под них, встроенная поддержка 128-битного шифрования AES и технологий TPM, а также увеличенный срок гарантии производителя.

— AMD E-серия. Эта серия процессоров относится к APU, как и описанные выше Fusion A, однако принципиально отличается по специализации: основной сферой применения E-Series являются компактные устройства, в случае ПК — в основном неттопы (см. «Тип»). Соответственно, эти процессоры характеризуются компактностью, невысоким тепловыделением и энергопотреблением, однако их вычислительная мощь также невысока.

— Phenom. Серия производительных процессоров разработки AMD. Выделяются, в частности, многоядерностью – абсолютное большинство моделей выполнено по трёх- либо четырехъядерной архитектуре.

— Phenom II. Второе поколение производительных многоядерных процессоров от AMD. Имеют от двух до шести ядер.

— Opteron. Серия продвинутых процессоров разработки AMD, рассчитанных на применение прежде всего в серверах. Ключевые особенности — многоядерность (количество ядер может достигать 12) и одинаково высокая скорость при работе как с 32-, так и с 64-битными приложениями.

— Celeron. Процессоры бюджетного уровня, наиболее простые и недорогие десктопные чипы потребительского уровня от Intel, с соответствующими характеристиками. Тем не менее, нередко сочетают CPU со встроенным графическим модулем; особенно это характерно для последних поколений.

— Celeron D. Модифицированная версия бюджетных процессоров Celeron от Intel. Отличаются повышенной тактовой частотой, а также увеличенным объемом кэша второго уровня.

— Pentium. Серия бюджетных настольных процессоров от Intel, несколько более продвинутая, чем Celeron, однако уступающая моделям из серий Core i* (см. ниже).

— Pentium 4. Серия процессоров нижней ценовой категории от Intel. Имеют всего одно ядро. Относятся к устаревшим, на данный момент сняты с производства.

— Pentium D. Серия недорогих процессоров от Intel, преимущественно двухъядерных. Последнее поколение Pentium D было представлено в 2006 году, с тех пор они не выпускаются.

— Core 2 Duo. Двухъядерные процессоры, на момент выпуска относящиеся к среднему уровню. Последнее поколение Core 2 Duo было представлено в 2007 году, на сегодня эта серия окончательно устарела.

— Core 2 Extreme. Серия, включающая процессоры Core 2 Duo и Quad (см. выше) с улучшенной производительностью и расширенными возможностями разгона, включая свободный множитель. Сняты с производства.

— Core 2 Quad. Серия процессоров, во многом аналогичная описанным выше Core 2 Duo (включая хронологию выпуска). Фактически каждый чип состоял из пары Core 2 Duo в одном корпусе, обеспечивая таким образом повышенную производительность. Также являются устаревшими.

— Core i3. Серия процессоров начального и среднего уровня, наиболее бюджетная серия в семействе Core ix. Выполнены на основе двухъядерной архитектуры, имеют кэш третьего уровня и встроенный графический процессор.

— Core i5. Серия процессоров среднего класса как вообще, так и в семействе Core ix. Архитектура двух- либо четырехъядерная, имеют кэш третьего уровня, многие модели также оснащены встроенным графическим чипом.

— Core i7. Серия производительных процессоров; до появления линейки i9 в мае 2017 года были самыми продвинутыми в семействе Core ix. Имеют не менее 4 ядер (в топовых решениях — до 8), объемный кэш 3 уровня и встроенную графику.

— Core i9. Высокопроизводительные настольные процессоры, представленные в 2017 году; самая продвинутая серия в семействе Core ix и самая мощная линейка десктопных CPU потребительского уровня на момент выпуска. Имеют от 10 ядер (от 6 в мобильных версиях) и от 12 МБ кэша L3.

— Xeon. Серия производительных процессоров, предназначенных прежде всего для серверов. Хорошо подходят для работы в многопроцессорных системах. Количество ядер составляет 2, 4 либо 6, многие модели имеют кэш третьего уровня.

Помимо серий, современные процессоры делятся также на поколения, по времени выпуска. При этом одно поколение включает несколько серий, а одна серия может выпускаться в пределах нескольких поколений. Подробнее об этом см. «Архитектура»,

Разъем (Socket)

Тип разъема (сокета) для установки процессора на материнской плате. Для нормальной совместимости необходимо, чтобы CPU и «материнка» совпадали по типу сокета; перед покупкой того и другого этот момент стоит уточнять отдельно

Для процессоров Intel на сегодня актуальны следующие сокеты: S775, S1150, S1155, S1356, S1366, S2011, S2011 v3, S2066, S1151, S1151 Coffee Lake, S3647.

В свою очередь, процессоры AMD оснащаются такими типами разъемов: AM1, AM3/AM3+, FM2/FM2+, AM4, TR4.

Кол-во ядер

Количество физических ядер, предусмотренное в конструкции процессора. Ядро — это часть процессора, отвечающая за выполнение одной последовательности команд; соответственно, наличие нескольких ядер позволяет CPU работать одновременно с несколькими задачами, что положительно сказывается на производительности.

Обычно ядер — четное количество; трехъядерная архитектура встречается относительно редко и является скорее исключением, а одноядерные чипы практически полностью вышли из употребления. В настольных процессорах 2 ядра, как правило, характерны для бюджетных моделей и недорогих решений среднего класса, 4 — для среднего уровня, 6, 8 и более — для продвинутого, включая процессоры для серверов и рабочих станций. В то же время стоит учитывать, что фактические возможности CPU определяются не только данным параметром, но и другими характеристиками — прежде всего серией и поколением / архитектурой (см. соответствующие пункты). Не редкостью являются ситуации, когда, к примеру, более продвинутый и/или новый двухъядерный процессор оказывается мощнее, чем четырёхъядерный чип более скромной серии или более ранней архитектуры. Так что сравнивать CPU по количеству ядер имеет смысл только в пределах одной серии и поколения.

Hyper-threading

Поддержка процессором функции Hyper-threading.

Hyper-threading фактически представляет собой вариант одновременной многопоточности (SMT), разработанный компанией Intel и применяемый в её чипах с 2002 года. Данная технология используется для оптимизации нагрузки на каждое физическое ядро процессора. Её ключевой принцип (упрощённо) заключается в том, что каждое такое ядро определяется системой как 2 логических ядра — например, двухъядерный процессор система «видит» как четырёхъядерный. При этом каждое физическое ядро постоянно переключается между двумя логическими ядрами, по сути — между двумя потоками команд: когда в одном потоке возникает задержка (например, в случае ошибки или в ожидании результата предыдущей инструкции), ядро не простаивает, а приступает к выполнению второго потока команд. Благодаря такой технологии уменьшается время отклика процессора, а в серверных системах — увеличивается стабильность при большом количестве подключённых пользователей.

В процессорах AMD аналогичная функция применяется под оригинальным названием SMT (см. ниже).

SMT (многопоточность)

Поддержка процессором технологии одновременной многопоточности (SMT).

В широком смысле термин SMT охватывает все варианты одновременной многопоточности, однако компания Intel применяет для своих процессоров обозначение «Hyper-threading» (см. выше). Поэтому на рынке обозначение SMT встречается только в чипах AMD; впервые подобные процессоры были представлены в 2017 году в рамках микроархитектуры Zen. Основная цель SMT заключается в том, чтобы максимально устранить простаивания ядер процессора («пустые циклы», когда не выполняется никаких действий). Достигается это следующим образом: физическое ядро процессора «видится» компьютером как два логических ядра, каждое их которых работает со своим потоком команд. Когда в одном из потоков возникает задержка (например, при ожидании результата запроса) — система переключается на другой поток, заполняя паузу и не позволяя ядру простаивать. Благодаря этому повышается фактическое количество инструкций за такт, что даёт значительный прирост скорости и производительности без изменения тактовой частоты (к примеру, для серии Ryzen заявлено увеличение количества инструкций за такт на 40% по сравнению с предыдущим поколением чипов AMD).

Тактовая частота

Количество тактов за секунду, которое выдаёт процессор в штатном рабочем режиме. Тактом называется отдельный электрический импульс, используемый для обработки данных и синхронизации процессора с остальными компонентами компьютерной системы. Различные операции могут требовать как долей такта, так и нескольких тактов, однако в любом случае тактовая частота является одним из основных параметров, характеризующих производительность и скорость работы процессора — при прочих равных характеристиках процессор с более высокой тактовой частотой будет быстрее работать и лучше справляться со значительными нагрузками. В то же время стоит учитывать, что фактическая производительность чипа определяется не только тактовой частотой, но и рядом других характеристик — начиная от серии и архитектуры (см. соответствующие пункты) и заканчивая количеством ядер и поддержкой специальных инструкций. Так что сравнивать по тактовой частоте имеет смысл только чипы со схожими характеристиками, относящиеся к одной серии и поколению.

Частота TurboBoost / TurboCore

Максимальная тактовая частота процессора, достигаемая при работе в режиме разгона Turbo Boost или Turbo Core.

Название «Turbo Boost» используется для технологии разгона, используемой компанией Intel, «Turbo Core» — для решения от AMD. Принцип действия в обоих случаях один: если некоторые ядра не задействованы или работают под нагрузкой ниже максимальной, процессор может перебрасывать на них часть нагрузки с загруженных ядер, повышая таким образом вычислительную мощность и производительность. Работа в таком режиме характерна повышением тактовой частоты, она и указывается в данном случае.

Отметим, что речь идёт о максимально возможной тактовой частоте — современные CPU способны регулировать режим работы в зависимости от ситуации, и при относительно невысокой нагрузке фактическая частота может быть ниже максимально возможной. Об общем значении данного параметра см. «Тактовая частота».

Частота TurboBoost Max 3.0

Тактовая частота процессора при работе в режиме разгона TurboBoost Max 3.0.

Данный режим является своеобразной надстройкой над оригинальным Turbo Boost (см. выше). Основной принцип его работы заключается в том, что самые критичные и «тяжеловесные» задачи отправляются для выполнения на самые быстрые и незагруженные ядра процессора. За счёт этого обеспечивается дополнительная оптимизация работы CPU и повышается его быстродействие. Как и в обычном режиме Turbo Boost, тактовая частота при использовании данной функции увеличивается, поэтому её указывают отдельно.

Техпроцесс

Техпроцесс, по которому изготовлен CPU. Указывается по размеру отдельных полупроводниковых элементов (транзисторов), из которых состоит процессор. Чем меньше этот размер, тем более продвинутым является чип: уменьшение техпроцесса снижает тепловыделение и энергопотребление, а также позволяет предусмотреть на том же кристалле большее количество транзисторов. В свете этого развитие CPU идет именно в сторону уменьшения техпроцесса.

Сегодня на рынке центральных процессоров, кроме современных 14 и 22 нм , все еще можно встретить 28, 32, 45, и даже 65 нм .

Архитектура

Архитектура, по которой построен процессор.

Данный параметр характеризует, во-первых, техпроцесс (см. выше), во-вторых, некоторые особенности внутреннего устройства процессоров. Новая (или хотя бы обновленная) архитектура вводится на рынок вместе с каждым новым поколением CPU; чипы одной архитектуры являются «ровесниками», но могут относиться к разным сериям (см. выше). При этом одно поколение может включать как одну, так и несколько архитектур.

Вот наиболее распространенные на сегодняшний день архитектуры Intel: Skylake (6-е поколение), Kaby Lake (7-е поколение), Skylake-X (7-е поколение), Kaby Lake-X (7-е поколение), Coffee Lake (8-е поколение)

Для AMD, в свою очередь, этот список включает Godavari, Kaveri Richland, Trinity, Vishera, Bristol Ridge, Zen.

Интегрированная графика

Наличие модуля для обработки графики, встроенного непосредственно в процессор. Этот модуль отвечает за вывод изображения на монитор, а необходимая для этого память отбирается из оперативной — таким образом, в одном чипе фактически совмещаются CPU и интегрированная видеокарта. Подобная графика имеет сравнительно невысокую мощность; она вполне подойдёт для несложных задач вроде офисных приложений, Интернет-серфинга, просмотра видео; однако для игр и других задач, требовательных к графике, стоит всё же иметь дискретную видеокарту.

Интегрированное видео с недавних пор предусматривается в большинстве десктопных процессоров; однако встречаются и модели без встроенной графики.

Модель GPU

Модель интегрированного видеоядра, установленного в процессоре. Подробнее о самом ядре см. «Интегрированная графика». А зная название модели графического чипа, можно найти его подробные характеристики и уточнить производительность процессора по работе с видео.

Что касается конкретных моделей, то в процессорах Intel используются, в частности, HD Graphics 510, HD Graphics 530, HD Graphics 610, HD Graphics 630 и UHD Graphics 630. Чипы AMD, в свою очередь, могут нести видеокарты Radeon R5 series, Radeon R7 series и Radeon RX Vega.

1-го уровня L1

Объём кэша 1 уровня (L1), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 1 уровня имеет наибольшее быстродействие и наименьший объём — до 128 Кб. Он является неотъемлемой частью любого процессора.

2-го уровня L2

Объём кэша 2 уровня (L2), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Объём кэша 2 уровня может достигать 12 МБ, такой кэш имеет абсолютное большинство современных процессоров.

3-го уровня L3

Объём кэша 3 уровня (L3), предусмотренного в процессоре.

Кэш — промежуточный буфер памяти, в который при работе процессора записываются наиболее часто используемые данные из оперативной памяти. Это ускоряет доступ к ним и положительно сказывается на быстродействии системы. Чем больше объём кэша — тем больше данных может в нём храниться для быстрого доступа и тем выше быстродействие. Кэш 3 уровня имеет наименьшее быстродействие и наибольший объём — до 24 МБ; такой кэш обязательно имеется в наиболее продвинутых и производительных моделях, однако есть немало процессоров и без него.

Частота системной шины

Частота системной шины, поддерживаемая процессором, фактически — тактовая частота, на которой происходит обмен данными между процессором и остальной системой.

Данный параметр является ключевым для определения общей тактовой частоты CPU (см. выше): эта частота равняется частоте системной шины, помноженной на множитель (см. ниже).

Тепловыделение (TDP)

Максимальное количество тепла, выделяемое процессором при работе в штатном режиме. Этот параметр определяет требования к системе охлаждения, необходимой для нормальной работы процессора, поэтому иногда его называют TDP — thermal design power, буквально «мощность температурной (охлаждающей) системы». Проще говоря, если процессор имеет тепловыделение в 60 Вт — для него необходима система охлаждения, способная отвести как минимум такое количество тепла. Соответственно чем ниже TDP — тем ниже требования к системе охлаждения. Низкие значения TDP (до 50 Вт) особенно критичны для ПК, в которых нет возможности установить мощные системы охлаждения — в частности, систем в компактных корпусах, куда мощный кулер попросту не поместится.

Поддержка инструкций

Поддержка процессором различных наборов дополнительных команд. Это могут быть инструкции, оптимизирующие работу процессора в целом либо с приложениями определённого типа (например, мультимедийными, или 64-разрядными), предотвращающие запуск на компьютере определённого рода вирусов и т.п. У каждого производителя имеется свой ассортимент инструкций для процессоров.

Множитель

Коэффициент, на основании которого выводится значение тактовой частоты процессора. Последняя вычисляется путём умножения множителя на частоту системной шины (см. Частота системной шины). Например при частоте системной шины 533 МГц и множителе 4 тактовая частота процессора будет составлять приблизительно 2,1 ГГц.

Свободный множитель

Возможность изменять значение множителя (см. Множитель) процессора по собственному желанию. В отличии от оверклокинга («разгона») в его классическом понимании, часто связанного со взломом настроек процессора, свободный множитель даёт возможность «легально» и довольно легко менять тактовую частоту процессора — чаще всего это реализуется через настройки BIOS. При этом не стоит забывать, что увеличенная частота работы процессора требует соответствующей эффективности системы его охлаждения.

Макс. рабочая температура

Максимальная температура, при которой процессор способен эффективно продолжать работу — при нагреве выше этой температуры большинство современных процессоров отключаются, дабы избежать неприятных последствий перегрева (вплоть до сгорания чипа). Чем выше максимальная рабочая температура — тем менее процессор требователен к системе охлаждения, однако мощность охлаждения в любом случае не должна быть ниже TDP (см. Тепловыделение (TDP)).

Макс. объем

Максимальный объём оперативной памяти (RAM), с которым процессор может корректно работать.

Чем больше объём «оперативки» — тем более высокие мощности требуются для корректной работы с ней. Соответственно, любой процессор неизбежно будет ограничен по данному параметру. Впрочем, даже сравнительно скромные современные CPU могут иметь весьма внушительные максимальные объёмы RAM, исчисляемые десятками гигабайт.

Макс. частота DDR3

Наибольшая частота модулей оперативной памяти стандарта DDR3, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки». Что же касается DDR3, то это один из наиболее распространённых современных типов RAM; он постепенно вытесняется более продвинутым DDR4, однако всё ещё весьма популярен.

Макс. частота DDR4

Наибольшая частота модулей оперативной памяти стандарта DDR4, с которыми совместим процессор.

Более высокая частота модулей памяти, с одной стороны, увеличивает скорость их работы, с другой — выдвигает повышенные требования к вычислительной мощности процессора. Поэтому современные CPU имеют ограничения по частоте «оперативки».

Стандарт DDR4 был представлен в 2010 году (окончательная версия — в 2012) как наследник популярного DDR3.

Число каналов

Максимальное количество каналов, поддерживаемое процессором при работе с оперативной памятью.

Простейшим режимом для современных ПК является одноканальный (когда весь объём RAM воспринимается как единый массив). Он поддерживается всеми процессорами и материнскими платами. Однако чаще всего встречаются «материнки» на 2 канала, а в более продвинутых моделях это число может достигать 3 или даже 4. Многоканальный режим значительно повышает производительность, однако требует применения специализированных комплектующих, включая процессоры с поддержкой соответствующего числа каналов.

ek.ua

Правильный подбор комплектующих для ПК

Большинство знают о том, что в минимальный состав совершенно обыкновенного системного блока входят процессор, материнская плата, видеокарта, оперативная память, жесткий диск, корпус с блоком питания и другие менее значимые составляющие. И скорее всего никому не нужно объяснять, как важен правильный подбор комплектующих для ПК.

Правильный подбор комплектующих для ПК

Когда и почему нужно собирать новый компьютер

Все эти комплектующие взаимодействуют друг с другом, и стабильно работают до тех пор, пока что-то не выйдет из строя. Как видно из практики, большая часть компьютерного железа (железо - комплектующие компьютера) рассчитана на длительное время работы. В итоге необходимость сборки нового ПК появляется не из-за какой-либо поломки, а по причине того, что внутренняя составляющая системного блока неизбежно устаревает и уже не справляется с современными задачами.

Если взять рабочий системный блок 10-ти летней давности, то он и сегодня будет выполнять свои функции, однако вы сразу ощутите колоссальную разницу между старичком, и свежей заменой. Дело не в физическом старении комплектующих, здесь всему виной является технический прогресс, ведь почти каждый год появляются более производительные составляющие.

Нет смысла постоянно производить обновление компьютерной системы, по причине довольно ёмких денежных затрат. В связи с этим, как правило сборка, предназначенная для игр, производится с перспективой на несколько лет вперёд, а если цель сборки компьютер для выполнения офисных задач, то срок его использования должен увеличиться ещё на более долгий срок службы, но тут никак не обойтись без правильного выбора комплектующих для компьютера. Информация о том, как выбрать компьютер так же будет очень полезной, а в чём-то даже и схожей.

Актуальный подбор комплектующих для ПК на сегодняшний день

Выбор процессора для будущего компьютера

Процессор – это начальное звено, то от чего стоит отталкиваться при сборке нового компьютера в первую очередь, вне зависимости от дальнейшего предназначения компьютера. Только после того как выбран конкретный процессор можно и дальше продолжать решать вопрос комплектующими: с материнской платой и оперативной памятью и т.д.

Взглянув на процессорный ассортимент, вам сразу кинутся в глаза два конкурента Intel и AMD. Если поверхностно разобраться в тестах и обзорами выбора между этими торговыми марками, позволительно прийти к небольшому выводу: процессоры Intel хороши в плане производительности, а AMD лучше в ценовом сегменте.

Выбор процессора AMD

Если взять идентичные по частоте и количеству ядер два процессора разных производителей, то тут с большей вероятностью выйдет победителем именно Intel. Ведь у них хорошо реализована структура CPU, на разработку которой ушли годы. AMD менее производительны как покажется на первый взгляд, но если сравнивать их немного по-другому, а именно по цене и производительности, то AMD в средне ценовом сегменте обычно более производительны.

Конечно же выбирать между тем или иным производителем – это вопрос больше философский, так как фанаты всегда поддерживают одного из этих конкурентов. Для начала необходимо ознакомиться с ведущими решениями от AMD.

Данные центральные процессоры на сегодняшний день делают под socket (тип разъема) AM3+, имеющие три серии моделей FX с 4-ех, 6-ти и 8-ми ядрами и стоимости этих технических решений соответственно разные. Эти процессоры станут отличным бюджетным решением для современных игр. При этом количество ядер будет влиять на лучшую многозадачность, что сейчас не маловажно. Но тут фактор в пользу Intel - большинство нынешних компьютерных игр адаптированы под четырёх ядерные процессоры.

Как актуальное дешёвое дополнение для обновления компьютера на сегодня будут 4-ех ядерные процессоры AMD Athlon c socket FM2 и с socket AM3 AMD Athlon X4. Но эти процессоры не имеют интегрированного графического ядра, что довольно значимо, ведь для офисного компьютера покупка видеокарты будет лишней растратой, поэтому эти модели для сборки перспективного игрового компьютера лучше не использовать. Если вы желаете интегрированное видео, что считается оптимальным для пользовательского или офисного компьютера, то вам стоит присмотреться на процессоры с socket FM2/FM2+.

Самыми не дорогостоящим и современным решением от AMD будут являться процессоры серии FX 4100 - 4350. FX4XXX позиционирует больше как хорошая платформа для домашнего компьютера, в своё время как FX6XXX (FX6100 – 6350) неплохо будет проявлять себя как бюджетный игровой компьютер, имеющий разгонный потенциал. Конечно для более высокой производительности можно выбрать процессоры FX 8xxx и 9xxx серии, производительность которых считается лучшей у изготовителя.

Выбор процессора Intel

У процессоров от Intel система выбора немного проще. Процессоры последнего будут оптимальным решением сборки современного компьютера, имеют сокет 1150 и независимо от цены, все эти процессоры оснащены встроенным графическим ядром, а завершающей серию модельного ряда, как и у процессоров с разъёмом 1155 здесь завершает Intel Core i7. Он имеет 4 ядра и технологию hyper threading (8 потоков). В младшей модели Intel Core i3 (2 ядра, 4 потока) реализовано всё самое необходимое для стабильной работы при довольно ресурсоёмких задачах.

Старшая модель рассчитана совершенно на все случаи жизни, начиная от высоко требовательных игр и заканчивая кодированием и обработкой видео. Что касается Intel Core i3 – это начальный игровой вариант, ну или минимальный вариант для бюджетного игрового компьютера. Золотой серединой производительного компьютера будет Intel Core i5, тут ничего лишнего, честные 4 ядра. Для офисных компьютеров, существуют еще две серии двухъядерных моделей – Pentium и Celeron. Процессор Pentium больше подходит для дома, так как он чуть-чуть производительней, а значит и дороже, а Celeron хоть и подходит для не очень ресурсоемких задач таких как просмотр фильмов и прослушивание музыки, веб сёрфинг и социальные сети, но его производительности будет явно хоть и не везде, но не хватать.

Материнская плата

После долгого определения с выбором такого комплектующего для ПК как процессора, настал час задуматься о материнской плате. Сначала посмотрите на сокет предварительно выбранного процессора, затем по этим параметрам начните подбирать материнскую плату. Разъём материнки и CPU должен совпадать в обязательном порядке. При подборе данного вида комплектующих стоит обратить внимание на чипсет (влияет на многое, к примеру, на максимально поддерживаемую частоту ОЗУ, наличие SATA 3 и USB 3.0), количество разъемов (USB, SATA, PCI, DDR, DVI/VGA для интегрированного видео), форм-фактор (габариты платы) и производителя.

Рекомендуемыми производителями здесь выступают Gigabyte, Asus и MSI, некоторые модели материнских плат других производителей на самом деле могут быть даже и производительнее и не менее надёжными, например, как ASRock. Эти же фирмы-производители хорошо зарекомендовали себя и в производстве видеокарт. А вот производителей, комплектующих тех же материнской платы и видеокарты совершенно не обязательно покупать одной марки. Материнских плат в продаже множество, а вот какую предпочесть вам – это индивидуальный подход.

Видеокарта

Видеокарта необходима компьютеру не только для вывода изображения на монитор. Она еще отвечает за обработку той самой графики, особенно это касается трехмерных развлечений. Сегодня для того что бы комфортно играть на минимальных настройках, нужно выбрать видеокарту уж точно не менее производительную чем Nvidia GeForce 730 или AMD Radeon R7 240. Средний оптимальный вариант GeForce 760/770. Если есть желание долгое время наслаждаться высокими или ультра настройками, готовьтесь раскошелиться на GeForce 790 или AMD Radeon R9 270 290X, а может даже и GeForce GTX 980. Тут не стоит терять голову, лучшим компьютер всегда у вас не будет и то, что сегодня стоит 1999$ завтра уже будет стоить 299$, хотя разницы между производительностями и функциональности моделей можно даже и не заметить.

Что касается интегрированного видео, тут всё гораздо проще просто. Графический процессор уже встроен производителем в CPU. Он как раз будет работать вместо видеокарты, а память ОЗУ будет использовать для выполнения функции видеокарты. В настройках BIOS есть возможность самостоятельно выделить доступную память под интегрированное видео. Максимальный допустимый выделяемый объем зависит от возможностей материнской платы (можно уточнить в инструкции или на официальном сайте производителя).

Оперативная память

Для комфортной работы сегодня минимальным объёмом является 4 ГБ ОЗУ. Это касается офисных компьютеров и сборок для простых задач. Игровому ПК желательно иметь 8 ГБ, ну или при великом желание 16 ГБ, которые могут не использоваться, решать вам. Тут важно уделить внимание выбору планок оперативной памяти с необходимой частотой. Покупать ОЗУ с максимальной частотой – не нужно, тут нужна та, которая одновременно поддерживается материнской платой и процессором. Хорошо специализируются в данном вопросе такие фирмы как Corsair, Goodram, Kingston, Silicon Power, Transcend.

Еще немаловажным фактом является двухканальный режим работы присущий большинству, если не всем современным материнским платам. Он прибавляет производительность более чем на 15%. Как этого добиться? Очень просто. Купите два одинаковых модуля оперативной памяти. Например, 2 планки по 2 ГБ каждая (4 ГБ ОЗУ) или по 4 ГБ (8 ГБ ОЗУ), обычно в магазинах уже продаются наборы, укомплектованные планками памяти одной партии.

Жесткий диск и твердотельный накопитель

Вот мы и подошли вплотную к пользовательской памяти. Все знают предназначение жёсткого диска, именно на нем хранится вся информация. Но это не говорит об возможности установки операционной системы только на него. Сегодня HDD накопители остаются хорошими устройствами хранения информации, но для получения большей отдачи от компьютера под раздел для ОС уже довольно многие отдельно покупают SSD, с емкостью от 120 ГБ. Технология SSD показала себя с положительной стороны в плане быстродействия. Если на твердотельный диск установить всё системное ПО, то вы почувствуете существенную разницу между самым обыкновенным HDD и SSD. Компьютер станет грузиться считанные секунды, мгновенно будут открываться все приложения, и вы навсегда забудете о временных зависаниях.

А что касается жесткого диска, то он до сих пор остается актуальным в плане накопления данных. Выгодно покупать HDD с объемом от 1 ТБ, так как получается дешевле стоимость 1 ГБ памяти. Что касается механики, скорость вращения шпинделя у всех стандартна, 7200 оборотов в минуту. Просто меньше выбирать не стоит, если конечно не производится обновление ноутбука, да и в них SSD уже не считается новизной.

Объем буфера винчестера желательно иметь не меньше 32 МБ. Немаловажным моментом еще считается изготовитель. Сегодня они почти все одинаковы. При правильном подборе комплектующего ПК, такого как HDD следует присмотреться к давно существующим на рынке производителям Western Digital и Seagate, именно на них рекомендовано ориентироваться, хотя это не обязательное правило которого стоит придерживаться, даже среди этих производителей попадается брак, хоть и с меньшей вероятностью.

Корпус и блок питания

Если присмотреться к ассортименту корпусов, то можно обратить внимание на наличие блока питания, поставляемого в комплекте. Такой БП позволительно взять только в случае использования комплектующих с низким энергопотреблением и то не менее чем 400W. Такой блок питаний конечно подойдёт для сборки офисного компьютера с интегрированным видеоадаптером ну или для некоторых сборок компьютера для дома.

У вас игровая сборка с видеокартой? Тогда зайдите на сайт производителя, посмотрите рекомендуемую мощность БП для предпочитаемой видеокарты, накиньте в запас 100-150W и купите качественный блок питания. Ни в коем случае не подключайте то питание, что было в комплекте, существует риск спалить сам блок и другие комплектующие. Дело в том, что такие БП не соответствуют заявленной мощности, при этом их качество в основном оставляет желать лучшего. Ориентируйтесь на качественное питание от Cooler Master или Chieftec ну, или как минимум FSP и аналоги. Они не только надежны, но и оптимальны в плане разъемов. В них увеличенное количество портов для питания SATA и прочих устройств, а также длиннее сами провода. Для более правильного понимания того, о чём идёт речь, ознакомьтесь со статьёй: как выбрать корпус для компьютера.

Эти преимущества особенно нужны для игровой сборки компьютера, в противном случае можно приобрести модели по дешевле. Что касается корпуса – выбрать можно любой, ориентируясь на форм-фактор и свой вкус, не стоит забывать о хорошей продувке, ведь обычно очень мощные компьютеры, особенно после разгона очень хорошо нагреваются.

Прочие комплектующие

Последним этапом остаются другие комплектующие персонального компьютера. Сюда относятся DVD привод, прочие адаптеры, тюнеры и т.д. Здесь у каждого индивидуального предпочтения. Однако до сих пор в актуальности остается оптический привод, так как в последнее время набирают популярность Blu Ray, хоть и не пользуются огромным спросом. А некоторые специально покупают привод только ради установки ОС и драйверов, наверное, не зная о возможностях загрузочной флешки. Если вы примете решение купить привод, то лучший по качеству скорее Asus и Nec, вероятность поломки достаточно низкая, хотя на самом деле тут как повезёт.

Приведённая краткая информация окажется полезна при подборе комплектующих для будущего компьютера. Однако после составления списка желаемого железа, если не обладаете достаточным опытом, для воздержания дополнительного похода в магазин для обмена не тех комплектующих, лучше посоветоваться со специалистом. Такой специалист может находится и в магазине. Профессионалы укажут вам на ошибки, которые может совершить новичок. Возможно, даже порекомендуют что-то более достойное.

После 100% убеждения в правильном подборе комплектующих и в их совместимости, покупайте их приступайте к сборке. В интернете есть множество видео обзоров, как это делается. Они очень помогут вам в решении данной задачи. Крайний случай – отдать железо специалисту, и он соберет всё до кучи, обычно сборка входит в бесплатный бонус после покупки.

procomputer.su

Как выбрать процессор для компьютера?

На рынке процессоров для настольных компьютеров много лет продолжается «война» между AMD и Intel. Устойчиво мнение, что в нижнем ценовом диапазоне продукция AMD может предоставить более интересные решения, тогда как в верхнем для Intel нет конкурентов. Очевидно, что самое интересное — это средний ценовой диапазон, где между двумя гигантами с переменным успехом ведётся борьба за пользователя.

Выбор между этими производителями придётся сделать сразу и, вероятие всего, надолго, поскольку от этого зависит выбор материнской платы. Каждый процессор предназначен для установки в свой уникальный разъём (он же — Socket), каждая материнская плата имеет только один такой разъём.

Какой разъём/сокет выбрать для процессоров AMD или Intel?

Большое количество различных разъёмов и их однообразные названия сперва могут обескуражить, но на самом деле всё максимально просто. Существуют всего несколько актуальных для массового пользователя типов как для продукции Intel, так и для процессоров AMD.

Как выбрать процессор: у топовых процессоров AMD при нагрузке энергопотребление в разы выше, чем у процессоров производства Intel
Энергопотребление у топовых процессоров производства AMD в нагрузке доходит до заоблачных трёхсот ватт и выше

Intel LGA 1150 — одно из наиболее популярных решений. Можно установить достаточно мощные (вплоть до топовых) процессоры, начиная от Сore i3 и заканчивая некоторыми Сore i7, например, вот эти модели. Отлично подойдёт для сборки игрового или мультимедийного компьютера.

Intel LGA 1155 — более устаревшая версия, которая, впрочем, обладает практически тем же набором характеристик. Поддержка платформы уже закончилась и, к примеру, новое поколение процессоров Intel Core Haswell под этот конструктив уже не выпускается. Иными словами: когда придёт время замены процессора, вы не сможете купить новую модель в рамках платформы — вам придётся менять всю платформу.

Если необходима максимальная производительность, то внимание стоит обратить на разъем LGA 2011 — тяжёлая артиллерия в семействе Intel. Поддерживает возможность установки северных процессоров Intel Xeon, а также ультрапроизводительных Intel Сore i7 3970Х Еxtreme Еdition. Отлично подойдёт тем, кто занимается действительно ресурсоёмкими задачами, требующими огромной вычислительной мощности.

Самыми ходовыми решениями в таборе AMD являются процессоры в исполнении Socket AMD FM2. В рамках платформы представлены 2- и 4-ядерные процессоры с неплохой интегрированной графикой или без неё, с поддержкой собственного режима безопасного разгона Turbo. Решения этого типа могут послужить хорошим вариантом как для рабочих, так игровых систем.

В лабораториях AMD подготовили также и своё «секретное оружие», которое хоть и проигрывает Intel в топовых решениях, но может обеспечить компьютеру высочайшую вычислительную мощность и отличную многозадачность. Это касается процессоров под Socket AM3+. Для этой платформы создаются самые мощные и производительные решения, но все они изначально лишены встроенной графики.

Завершая рассказ о наиболее популярных платформах, обратим внимание на ряд материнских плат с уже встроенными центральными процессорами. Подобные решения удобным в том плане, что позволяет не задумываться о выборе подходящей платформы, процессора или видеокарты и их совместимости между собой, а также избавляют пользователя от лишних проблем со сборкой. Но мощности таких систем хватит скорее для выполнения офисных задач и простых, нетребовательных игр. Могут оказаться отличным решением для офисных компьютеров или в ситуациях жёсткой экономии бюджета.

Совет. Определившись с производителем, лучше всего выбрать самую последнюю платформу. Socket AMD FM2 или Intel LGA 1150, если речь идёт о домашних персональных компьютерах. Сэкономив деньги и купив устаревшую платформу сегодня, завтра вы можете оказаться в ситуации, когда заменить процессор в рамках вашей платформы невозможно, поскольку новые процессоры под неё не выпускаются.

Как разобраться в иерархии серий современных процессоров?

В своё время компания Intel сделала отличный маркетинговый ход, запустив в производство новое семейства процессоров Intel Core и распределив их на три отдельные линий, в зависимости от производительности.

Intel Core i3 - младший брат в семействе, прямой конкуренты предыдущего поколения Core 2 Duo. Представлен 2-ядерными процессорами с интегрированной графикой, предназначенными для установки в компьютеры начального уровня. В собственном рейтинге процессоров Intel имеет три звезды, в то время как более старые разработки Intel Celeron и Pentium имеют одну и две звезды соответственно.

Intel Core i5 - средний брат, предназначенный уже для компьютеров среднего уровня. Представлен 2 и 4-ядерными моделями с увеличенной тактовой частотой работы и возможностью разгона. Реализован режим автоматического повышения частоты Turbo Boost, некоторые модели имеют встроенную графику. Четыре звезды в рейтинге.

Как выбрать процессор: на этом графике наглядно продемонстрировано, что “гонка тактовых частот” среди производителей процессоров закончилась ещё несколько лет том, уступив место многоядерности
Как видно из графика, тенденция увеличения тактовой частотой остановилась  ещё несколько лет тому, уступив многоядерности и увеличения кэша

Intel Core i7 - наиболее дорогие и производительные решения, представленные 4- и 6-ядерными моделями для настольных компьютеров высшего класса. Увеличенная тактовая частота, увеличенный кэш и поддержка ряда современных решений практически лишают их сколько-нибудь серьёзных конкурентов. Пять звёзд в рейтинге Intel.

За время развития семейство центральных процессоров Intel Core пережило несколько поколений: Sandy Bridge (2-е поколение, январь 2011), Ivy Bridge (3-е, апрель 2012) и Haswell (4-е, июнь 2013). Каждое привносило множество нововведений, изменяло техпроцесс и потребление энергии. Но несмотря на это, в плане скорости отличия между процессорами одной линейки, но разных поколений, весьма незначительны. И если у вас установлен процессор Intel Core i5 3570k на Ivy Bridge, то заменив его на Core i5 4670k на Haswell вы можете даже не заметить разницы в скорости выполнения задач.

Что касается лагеря AMD, то тут вместо удобных цифр используются полноценные «имена», но логика таже.

AMD Athlon II — младшее, бюджетное решение, представленное процессорами с 2 и 4 ядрами на борту. Встроенного графического чипа нет, но часть моделей поддерживает режим безопасного автоматического разгона Turbo. В любом случае выбрав процессор этой серии вам придётся позаботиться об отдельной видеокарте, что потянет дополнительные расходы. Может послужить неплохой основной для бюджетных игровых компьютеров.

AMD Fusion — наиболее популярная и весьма перспективная серия. На рынке представлена линейками 2-ядерных процессоров с относительно невысокой производительностью (имеют индекс А4 в названии), более производительными 2-ядерными моделями среднего уровня (с индексом А6 в названии), а также наиболее мощными 4-ядерными собратьями (А8). Что примечательно: интегрированная графика у этого решения не только лучше, чем у конкурентов аналогичного уровня, но даже может обойти по производительности некоторые бюджетные видеокарты.

AMD FX — наиболее производительное решение из того, что AMD представило на данный момент. В рамках серии на рынок выпущены 4-, 6- и 8-ядерные решения с тактовой частотой работы от 2.8 до 4 ГГц и выше. Реализован режим Turbo, кэш третьего уровня составляет 8 Мб, свободный множитель оставляет возможность для разгона. В сравнении с Intel Core i7 имеет более высокий уровень потребления электроэнергии и, соответственно, больше нагревается, но при этом стоит дешевле.

Совет. Если собираете простенький компьютер для работы с офисными приложениями, просмотра видео, и сёрфинга в интернете — можно остановиться на бюджетных процессорах с интегрированной графикой, к AMD Fusion, Intel Core i3 или Intel Core 2 Duo. Для игрового компьютера лучше обратить внимание на средний ценовой диапазон: Intel Core i5 4670K для современных игрушек хватает с головой, а возможность разгона обеспечит потенциал на будущее; 2- или 4-ядерные решения для сокета FM2 (вот эти, к примеру) в связке с недорогой видеокартой уровня GeForce gtx 660 позволят запускать современные игры на достаточно высоких настройках графики.

На какие параметры нужно обращать внимание при выборе процессора?

1. Количество ядер

Одноядерные процессоры выполняют команды последовательно, одну за другой. Многозадачность достигается за счёт средств операционной системы — задачам присваивается определённый приоритет в интенсивности, пока процессора не оказывается загруженным на 100%. Современные процессоры имеют несколько ядер, каждое из которых загружается независимо. Проще говоря, их количество характеризует количество программ, которое мы можем одновременно запустить без потери производительности.

Совет. Процессор с 2 ядрами — необходимый минимум в современном мире, 4 ядра — оптимальное решение для десктопных компьютеров. А вот 6 и больше — такая модель послужит скорее хорошей инвестицией на будущее, но реального повышения производительности на домашнем компьютере уже сегодня вряд ли сможет обеспечить.

2. Тактовая частота

Тактовая частота – это количество операций, которое может совершить процессор за единицу времени. Важнейший параметр производительности, но не решающий. Ещё в первой половине 2000-х по тактовой частоте действительно можно было определить потенциальные возможности любого процессора. Сегодня по этому параметру можно сравнивать исключительно только процессоры одного производителя, одной архитектуры и одного семейства. Следует также учитывать, что у многоядерных процессоров тактовая частота не суммируется. Например, Intel Core i5 3570K имеет 4 ядра и частоту работы 3.4 ГГц. Но это вовсе не значит, что частота процессора в таком случае равна 13.6 ГГц. Это значит, что процессор имеет 4 ядра, каждое из которых работает со скоростью 3.4 ГГц.

Совет. Правило: «Чем выше тактовая частота работы — тем лучше» всё ещё действует, но гонка частот среди уже закончилась. Определятся с этим параметром стоит уже после того, как вы выбрали разъём, серию и количество ядер.

3. Что такое кэш и зачем он нужен?

Кэш – это блок сверхбыстрой памяти, которую использует центральный процессор. Если он снова и снова обращается к одним и тем же данным, то для увеличения производительности сохранит их копии у себя в кэше. Современные процессоры имеют несколько уровней кэша:

  • Кэш первого уровня (L1) - самый быстрый и самый маленький, объём варьируется в пределах 8–128 Кб; 
  • Кэш второго уровня (L2) - медленнее первого, но объём увеличен до 128–12288 Кб;
  • Кэш третьего уровня (L3) - самый медленный и самый большой. Так, для сравнения, у процессоров Core i3 он составляет 4 Мб, а для Core i7 – 8 или 10 Мб. Это одна из причин, почему Core i7 во много раз быстрее.

Совет. Особенно заострять внимание на этом параметре не нужно — каждый процессор имеет столько памяти, сколько необходимо, выходя из его производительных характеристик.

4. Дополнительные возможности

В первую очередь следует отметить режим Turboboost, которая позволяет поднимать тактовую частоту процессора при работе с особенно ресурсоёмкими задачами. Подобное обеспечивает прирост производительности — естественно, строго в разумных пределах, без угрозы повреждения чипа. Функция запускается автоматически, её можно полностью отключить в БИОСе.

Как выбрать процессор: многие современные процессоры поддерживают специальный режим автоматического безопасного “разгона” Turboboost
Turboboost – режим динамического увеличения тактовой частоты процессора, запускается автоматически при высокой нагрузке на ЦП

Важным фактором является наличие интегрированной графики — процессоры со встроенным графическим ядром стоят дороже. Некоторые оснащены достаточно мощным чипом, способным компенсировать отсутствие видеокарты в домашних мультимедийных системах. Обращать внимание на подобные решение стоит прежде всего тем, кто не собирается ставить в компьютер полноценную дискретную видеокарту — зачем платить за интегрированную, если вы ей пользоваться не будете?

Немаловажной опцией является наличие разблокированного множителя. Тактовая частота — это произведение частоты шины и множителя процессора. Изменения значения множителя почти всегда обеспечивает дополнительную производительность. Подобные приводят к повышению тепловыделения и при отсутствии соответствующего охлаждения всё это в лучшем случае закончиться зависанием системы, в худшем — покупкой нового процессора. Но как правило, современные процессоры имеют защиту от неумелого вмешательства, и в случае поднятия частоты выше разумных мер перегружают систему и скидывают значение множителя на дефолтное. Стоимость между аналогичными моделями с заблокированным и разблокированным множителем не столь существенная.

Ещё одна интересная разработка — технология Hyper-Threading от Intel. Позволяет направлять на ядро два потока данных одновременно, в то время как в классическом решение одно ядро может обрабатывать только один поток. Обеспечивает повышение производительности при работе с несколькими программами. Поддерживаются процессорами линейки Core i7, а также некоторыми моделями i3 и i5.

Разблокированный множитель позволяют менять тактовую частоту работы процессора для повышения его производительности. Мировым рекордом является разгон AMD FX-8150 до частоты 8429 МГц. Для охлаждения при этом использовался жидкий гелий

Также обратим внимание на «коробочные» издания процессоров с маркировкой BOX, которые поставляются с базовой системой охлаждения. Её эффективность многие могут поставить под сомнение, но для начального этапа этого вполне достаточно. Вопрос цены, опять же, не столь существенный, но при этом на коробочные модели часто распространяется более длительная гарантия. Если вы изначально планируете заняться оверлокингом или добиться полной тишины в работе компьютера — нужно покупать более качественное охлаждение. В прочих случаях — BOX-версия скорее всего окажется лучшим выбором.

Итоги

Чтобы выбрать лучший процессор для компьютера мало определиться с количеством ядер и их тактовой частотой. Следует обратить внимание на принадлежность к той или иной серии, платформу, набор вспомогательных технологий и пр.

При сборке бюджетного персонального компьютера лучше присмотреться к моделям с интегрированной графикой, а если со временем требования изменяться — всегда можно будет докупить дискретную видеокарту. Напротив, если вы изначально собираетесь покупать видеокарту, стоит ли тратиться на процессор с графическим ядром?

Intel или AMD? Пожалуй, это вечный спор и лучшего выбирает каждый пользователь в отдельности. Многие при этом руководствуются исключительно принципиальными взглядами: только «красные» или только «синие». Среди объективных фактов можно сказать, что Intel более экономичны в энергопотреблении, когда как AMD — просто дешевле при тех же основных характеристиках. Intel демонстрирует более высокую вычислительную производительность в тестах, AMD имеет лучшие графические ядра в своих гибридных процессорах.

 

Читайте также:

Рейтинг наиболее популярных процессоров на рынке Основан на комплексной статистике популярности той или иной модели среди интернет-аудитории. Как выбрать монитор для компьютера? В чём различия между матрицами, что такое время отклика и какое выбрать разрешение экрана? Стоит ли покупать SSD накопитель? Твердотельные накопители имеют более высокую скорость записи/чтения, они устойчивы к температурам и практически бесшумны. Как выбрать лучшую мышь для компьютера? Какие преимущества игровых мышей? На что влияет разрешение сенсора? Стоит ли брать беспроводную? Какой выбрать компьютер для рабочего места? Рабочий стол с компьютером — одно из наиболее важных мест в жизни современного человека.

 

 

ek.ua

как выбрать и не ошибиться? / Блог компании Сквадра Груп / Хабр

В каждом сервере установлена материнская плата, а в каждой материнской плате установлен процессор. Центральное процессорное устройство (ЦПУ) определяет, каким количеством данных сервер может управлять одновременно и как он может обработать все эти данные.Эта статья будет полезна всем будущим владельцам серверов, которые не знают, сервер с каким процессором выбрать. Какие основные моменты необходимо рассмотреть при выборе процессора:
  • Цели дальнейшего использования.
  • Количество ядер.
  • Совместимость с другими компонентами.
  • Скорость ЦПУ.
  • Цена.
Но сначала давайте разберемся, чем отличаются процессоры для настольных ПК и серверов, и могут ли они заменить друг друга.

Процессоры для настольных компьютеров Процессоры, применяемые в настольных компьютерах, были специально разработаны для этих задач. Хотя они в основном выполняют те же функции, что и серверные процессоры, отличия кроются в архитектуре. Например, одно из преимуществ таких процессоров – их легче разогнать.

Серверные процессоры Процессоры для серверов спроектированы в первую очередь для обеспечения высокой надежности. Тестируют такие процессоры в стрессовых условиях при высоких температурах и высоких вычислительных нагрузках. Они могут работать на очень высоких частотах, обеспечивая качественную обработку массивных данных.

Чем отличаются серверные процессоры от десктоптных?

  • Высокий контроль качества. Серверные процессоры проходят через все виды тестирований в самых суровых условиях. В качестве аналога можно привести следующий пример: двигатель пассажирского самолета требует более тщательного тестирования, чем двигатель автомобиля. Несомненно, риск неисправности двигателя самолета выше.
  • Надежность. Серверные процессоры отличаются отказоустойчивостью. В критической ситуации серверы могут избежать выключения или перезагрузки (при 2-х процессорной конфигурации). Они рассчитаны на работу нон-стоп 24/7. Десктопные варианты больше предназначены для «бытовой» многозадачности.
  • Наличие самокорректирующей системы. Серверные ЦПУ имеют алгоритм, позволяющий корректировать ошибки памяти, которые могут влиять на стабильность оборудования. Эта технология называется «проверка и исправление ошибок» (ECC).
Теперь перейдем непосредственно к выбору процессора.

Основные критерии выбора процессора

» Ядра Менее десяти лет назад все процессоры выпускались с одним ядром. Сейчас одноядерные процессоры стали исключением из-за повсеместной распространенности многоядерных процессоров. В последнее время даже софт разрабатывают таким образом, чтобы приложения могли задействовать многоядерную технологию. Существует большое количество вариантов для выбора – начиная от 2-х и заканчивая 22 ядрами.

Когда процессоры запускались на одном ядре, оно полностью отвечало за обработку данных, которые передавались на процессор. Чем больше ядер встроено в ЦПУ, тем больше они способны распределять его задачи. Это делает процессор быстрее и эффективнее. Очень важно понимать, что процессор отвечает только за исполнение задач, как и софт, работающий на нем. Всю основную работу выполняют ядра. Однако стоит учитывать, что если для корректной работы приложений используются 3 ядра из 8, то 5 ядер остаются незадействованными. Чтобы минимизировать затраты, стоит сопоставить системные требования с количеством ядер.

» Кэш Кэш процессора можно сравнить с памятью компьютера.  По сути, это небольшое количество очень быстрой памяти, которая используется для временного хранения данных. Это позволяет компьютеру очень быстро восстанавливать файлы, находящиеся в кэш-памяти процессора. Чем больше кэш-память, тем оперативнее процессор выполняет возложенные на него задачи.

» Сокет Совместимость сокетов – это первоочередная задача при выборе процессора. Сокет является средством связи между материнской платой и ЦПУ. Если вы уже купили материнку, проверьте, что установленный процессор совместим с ее сокетом. И наоборот, отдельно покупая процессоры, проверьте совместимость с материнкой. Это может пригодиться для дальнейшего апргрейда.

» Графический процессор (GPU) Многие современные процессоры имеют встроенные графические процессоры, которые выполняют расчеты, относящиеся к графике. Если у процессора отсутствует встроенный GPU, сервер все равно сможет отображать графику (если установлена отдельная видеокарта или материнка позволяет запускать видео). Однако для работы софта и приложений, интенсивно нагруженных графикой, ЦПУ со встроенным GPU будет работать намного эффективнее.

» Частота Частота ЦПУ, измеряемая герцами, это скорость, на которой он работает. Раньше было так: высокая частота = лучшая производительность. Эта формула более не действует. В некоторых случаях ЦПУ, работающий на низкой частоте, может в действительности работать лучше, чем процессор, обладающей высокой частотой. На это влияет архитектура процессора. Наравне с частотой очень важно обращать внимание на число команд процессора, выполняемых за цикл. Хотя частота по-прежнему является важным индикатором быстродействия процессора, теперь это не ключевой момент, влияющий на реальную скорость ЦПУ.

» Величина отвода тепловой мощности (TDP) Процессоры генерируют тепло. Величина отвода тепловой мощности, назначенная для процессора, объясняет, сколько тепла процессор может выделять. Это напрямую будет влиять на тип охлаждения, необходимого для ЦПУ. Если процессор поставляется без системы охлаждения, или эта система не используется, необходимо продумать систему охлаждения для корректной работы сервера. Перегрев – основная опасность для серверных компонентов.

Какая из спецификаций подойдет для вашей компании?

Во время выбора процессора некоторые критерии будут иметь большее значение, чем остальные. Для того, чтобы облегчить задачу по выбору процессора, мы подготовили типовые варианты решений в зависимости от размера вашей компании.

Небольшая компания:

  1. Ядра. Для большинства задач подойдет сервер с 4-х ядерным процессором. Если перед вами стоят более требовательные задачи – необходимо работать с графическим дизайном, выясните, какое количество ядер необходимо для конкретного софта. Если необходимо 8 ядер, то лучше всего инвестировать деньги сразу в сервер на базе 8-ядерных процессоров.
  2. Память. Количество памяти, которое поддерживает сервер, тоже может играть свою роль. Материнская плата и тип операционной системы помогут определиться с необходимым объемом.
  3. Частота. Софт, с которым вы планируете работать, будет влиять на скорость ЦПУ. Например, постоянное использование программы Adobe CS 6 потребует процессор со скорость как минимум 2 Ггц.
Средние компании
  1. Цена. Большинство средних компаний должны придерживаться установленного бюджета, когда дело касается покупки оборудования. Цена относительно производительности процессора может стать ключевым фактором.
  2. Многопоточность. При выборе серверного процессора обязательно обратите внимание на технологию гиперпоточной обработки (Hyper-Threading). Эта технология обеспечивает более эффективное использование ресурсов процессора, позволяя выполнять несколько потоков на каждом ядре и повышает пропускную способность процессоров, улучшая общее быстродействие многопоточных приложений.
Корпоративные заказчики
  1. Ядра. При выборе ЦПУ стоит учитывать количество ядер. Необходимо ориентироваться на технические требования приложений. Например, если установлен 8-и ядерный процессор, но для приложения необходимо только 4 из них, то нет смысла переплачивать. Размер не всегда имеет значение.
  2. Частота. Здесь тоже стоит ориентироваться на софт – некоторым компаниям хватает 2 Ггц, а другим и 4 Ггц мало.
  3. TDP. Проверьте этот показатель перед покупкой процессоров. Тогда вы будете уверенным, что система охлаждения справится с выделением тепла.

Есть ли смысл переплачивать за производительность?

Мы составили сравнительный список процессоров, относительно аналогичных по характеристикам, и указали цены за серверы, на борту которых установлены нижеуказанные модели ЦПУ (цены взяты на Яндекс.Маркет и Сквадра Груп от 23.05.2016):
Процессоры Сквадра Груп CPU Benchmark Цена за сервер, ₽ Новые процессоры CPU Benchmark Цена за сервер, ₽
Intel Xeon E5530 (4 Core, 8M Cache, 2.40 GHz) 4621 18 000 Intel Core i5-2300 (4 Core, 6M Cache, up to 3.10 GHz) 5283 78 000
Intel Xeon E5620 (4 Core, 12M Cache, 2.40 GHz) 4903 21 800 Intel Core i7-870 (4 Core, 8M Cache, 2.93 GHz) 5487 85 000
Intel Xeon E5645 (6 Core, 12M Cache, 2.40 GHz) 6533 39 400 Intel Xeon E3-1225 v3 (4 Core, 8M Cache, 3.20 GHz) 7005 124 300
Intel Xeon X5650 (6 Core, 12M Cache, 2.66 GHz) 7601 45 400 Intel Xeon E5-2620 v2 (6 Core, 15M Cache, 2.10 GHz) 8689 195 000
Intel Xeon E5-2670 v1 (8 Core, 20M Cache, 2.60 GHz) 12497 77 900 Intel Xeon E5-2640 v3 (8 Core, 20M Cache, 2.60 GHz) 14055 375 000
Так выглядит наглядная диаграмма соотношения производительности процессоров и цен на б/у и новые серверы: Очевидно, что цены на новые серверы значительно отличаются от б/у, хотя производительность процессоров примерно одинаковая.

Заключение

Итак, при выборе процессора определите для себя следующие вещи:
  1. Цель использования сервера.
  2. Технические характеристики приложений, для которых будет предназначен сервер.
  3. Совместимость с другими компонентами (память, ОС и т. д.).
  4. Размер компании.
  5. Цена

habr.com