Что можно программировать на python: Возможности языка python | Python 3 для начинающих и чайников

Что можно делать с Python?

У вас получилось: вы закончили курсы, или дочитали книгу, которая дает вам базу для программирования в Python. Вы освоили списки, словари, классы, может даже некоторые объектно-ориентированные концепции.

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Python Форум Помощи

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

Подписаться


И что дальше?

Python – это очень универсальный язык программирования, с плеядой пользователей во всех возможных сферах. Если вы освоили основы Python, и хотите построить на нем что-нибудь – важно понять, какой первый шаг следует сделать.

Содержание:

  • Что другие делают с Pyhton
  • Что я могу делать в Python?
  • 1. Автоматизация нудных дел
  • 2. Держать руку на курсе Биткоина
  • 3. Создание калькулятора
  • 4. Майнинг данных Twitter
  • 5. Создание миркоблога в Flask
  • 6. Создание блокчейна
  • 7. Разбираемся с лентой Twitter
  • 8. Играем в PyGames
  • 9. Выбирайте приключение
  • 10. Скажите “Hello World!” машинному обучению
  • 11. Бросаем вызов!
  • Чего (скорее всего) не стоит делать в Python?
  • Что если вашей идеи нет в этом списке?
  • Что делать дальше?

В данной статье мы рассмотрим несколько разных проектов, ресурсов и руководств, которые вы можете использовать для создания чего-либо в Python.

Что другие делают в Python?

Вы, наверное, думаете, что люди создают в Python в реальной жизни? Для начала, давайте быстренько пройдемся по крупным компаниям, которые используют данный язык.

Google, к примеру, использовали Python с самого начала, и сегодня он занимает место ведущих гигантов среди языков, ориентированных на серверную сторону. Гвидо ван Россум, добрый пожизненный диктатор Python (уже нет) даже работал нам на протяжении нескольких лет, наблюдая за тем, как развивается язык.

В Instagram любят Python за его простоту. Сервис известен «самым большим развертыванием веб-фреймворка Django, который полностью написан на Python».

Spotify использует язык из-за его сервисов анализа данных и бэкенда. Согласно команде разработчиков, простота использования Python позволяет достичь молниеносной скорости разработки. Spotify выполняет тонны анализов, чтобы собирать рекомендации своим пользователям, так что им нужно что-нибудь, что может выполнять такую работу быстро. Python – это решение!

Что я могу делать в Python?

Начиная с веб разработки до работы с научными данными, машинным обучением, и пр., приложения Python не имеют границ. Рассмотрим несколько проектов, которые помогут вам развить ваши навыки работы с Python.

#1: Автоматизация нудных дел

Это ресурс по «практическому программированию для начинающих». Как и говорится в заголовке, с этой книгой вы можете узнать, как автоматизировать скучные процессы, такие как обновление электронных таблиц, или переименовывать файлы на компьютере. Это отличная отправная точка для тех, кто уже освоил основы Python.

У вас будет шанс попрактиковаться в том, что вы уже выучили на данный момент, создавая словари, проводя скрейпинг сайтов, работая с файлами и создавая объекты и классы. Практические приложения, встречающиеся в этой книге дадут вам реальное представление о том, что вы можете делать незамедлительно.

#2: Держать руку на курсе Биткоина

Похоже, что сегодня о Bitcoin Python говорят все. С тех пор, как в декабре 2017, когда курс почти поднялся до отметки в 20 000 долларов, криптовалюта стала на слуху у миллионов. Цена продолжает колебаться, но многие считают инвестиции целесообразными.

Если вы хотите обогатиться на виртуальном золоте и хотите знать, когда делать следующий шаг, то вам нужно иметь представление о лучших ценах на bitcoin. Это руководство может научить вас, как использовать навыки работы в Python, чтобы построить собственную систему уведомлений о курсе Bitcoin.

Основа этого проекта – это создание IFTTT (if this, then that) апплетов. Вы узнаете, как использовать библиотеку requests для отправки запросов HTTP и как использовать webhook для подключения вашего приложения к внешним сервисам.

Этот проект – отличная отправная точка для начинающего питониста, который заинтересован в крипте. Сервис, который вы построите с данным руководством может быть расширен под другие валюты, так что если вы также рассматриваете Ethereum – двери открыты!

#3: Создание калькулятора

Этот простой проект – отличный шлюз в мире GUI программирования. Создание бекенд сервисов – это важная часть развертывания, но может появиться необходимость во фронтенде, которую стоит учитывать. Создание приложений, которыми пользователи могут легко пользоваться – это первостепенная важность.

Если вам интересен UX\UI дизайн, то это руководство вам понравится. Вы будете работать с модулем tkinter, стандартным пакетом графического пользовательского интерфейса, который поставляется вместе с Python.

Модуль tkinter – это обертка вокруг Tcl/Tk, комбинация скриптового языка Tcl и расширения фреймворка графического пользовательского интерфейса Tk. Если у вас есть установленный Python, то у вас уже есть готовый к использованию tkinter. Вам нужно сделать простой вызов перед началом:

<span>from</span> <span>tkinter</span> <span>import</span> <span>*</span>

<span>from</span> <span>tkinter</span> <span>import</span> <span>*</span>

После проведения установки, вы можете начать работу с постройкой своего первого GUI калькулятора в Python.
Попрактикуйтесь в использовании модуля tkinter и наблюдайте за тем, как ваше виденье материализуется на экране. После того, как вы окрепнете, вы можете начать работать с другими GUI инструментами Python. Ознакомьтесь к официальной документацией GUI программирования в Python для дополнительной информации.

#4: Майнинг данных Twitter

Благодаря интернету, и (все чаще и чаще) интернету вещей (IoT) – у нас есть доступ к огромному количеству данных, о которых не могли мечтать всего десять лет назад. Аналитика – это огромная часть любой сферы, которая связана с данными. О чем люди разговаривают? Какие шаблоны видны в их поведении?

Твиттер – отличное место, чтобы получить ответы на эти вопросы. Если вам интересен анализ данных, тогда майнинг данных в Twitter – отличный способ попробовать свои навыки в Python, чтобы ответить на вопросы об окружающем мире.

В учебном пособии по анализу Твиттера позволит вам получать данные из Твиттера и анализировать настроения пользователей в среде docker. Вы узнаете, как регистрировать приложение вместе с Твиттером, это понадобиться вам, чтобы получить доступ к потоковым API.

Вы увидите, как использовать Tweepy для фильтрации твитов, которые вы хотите вытягивать, TextBlob для подсчета настроения этих твитов, Elasticsearch для анализа содержимого этих твитов и Kibana для показа результатов. По окончанию данного руководства, вы уже будете готовы к тому, чтобы заняться другими проектами, которые используют Python для обработки текстов и распознавания речи.

#5: Создание микроблога с помощью Flask

Похоже, что у каждого сегодня есть блог, и нет ничего плохого в том, чтобы иметь собственный уютный хаб онлайн. С развитием Twitter и Instagram, микроблоги стали чрезвычайно популярными. В этом проекте Мигеля Гринерга, вы научитесь создавать собственный микроблог.

Он называется «Мега-руководство Flask», и однозначно соответствует названию. Проработав 23 главы, вы получите глубокое представление о веб-фреймворке Flask. К концу проекта, вы сможете создать полностью работающее веб приложение.
Вам не нужно знать что-либо о Flask, чтобы приступить к делу, так что это идеально для тех, у кого чешутся руки, чтобы приступить к веб разработке.

Руководство недавно было обновлено, и теперь включает в себя контент, который поможет вам стать лучшим веб разработчиком. Вы можете прочесть его бесплатно онлайн, купить экземпляр в Amazon, или пройтись с автором по онлайн курсу пошагово. После окончания курса, вы сможете перейти к Django и создавать более масштабные веб приложения.

#6: Создание блокчейна

Хотя блокчейн в основном разрабатывается как финансовая технология, его можно применять во многих других областях. Блокчейны можно применять практически во всех транзакциях: от сделок с недвижимостью, до передач медицинских отчетов.

Вы можете получить лучшее представление о том, как это работает, построив свой блокчейн! Руководство Hackernoon поможет вам реализовать блокчейн с нуля. К концу проекта, вы получите глубокое представление того, как работает эта технология транзакций.

Вы будете работать с HTTP клиентами и библиотекой requests. После установки веб-фреймворка Flask, вы сможете использовать запросы HTTP и взаимодействовать со своим блокчейном в интернете.

Помните, блокчейн – это не только для фанатов криптовалюты. Построив такой самим, вы легко найдете креативный способ реализовать эту технологию в интересующей вас области.

#7: Разбираемся с лентой Twitter

Интересует постройка веб приложений, но не хватает уверенности, чтобы начать мега-проект? Не беспокойтесь, мы кое-что подготовили для вас. С нами вы сможете научиться создавать простое веб приложение всего за несколько часов.

Боб Белдерброс делится кейсом, где он создал 40th PyBites Code Challenge, в котором участникам нужно было построить простое веб приложение для лучшей навигации по ленте новостей Daily Python Tip в Твиттере. Вы можете пройтись по результатам данного челенджа и ознакомиться с кодом.

Вместо Flask, вы будете использовать микро веб-фреймворк Bottle. Он славится тем, что является слабо зависимым решением для быстрого создания приложений. Так как он был разработан таким образом, чтобы быть легким и простым в использовании, вы сможете получить свое приложение практически мгновенно.
Вы также сможете работать с модулем Tweepy, чтобы загружать данные из API Твиттера. Вы сможете хранить данные в базе SQLAlchemy или Peewee, так что заодно получите небольшую практику в запросах SQL.

#8: Играйте в PyGames

Этот раздел для тех, кто хочет весело провести время. Python может быть использован для написания различных аркадных игр, адвенчур и пазлов, на разработку которых уйдет всего несколько дней. К классическим играм, типа пинг-понга вы сможете перейти, когда освоите новые навыки программирования.

Библиотека Pygame заметно упрощает разработку собственных игр. Он включает в себя практически все необходимое, чтобы вы могли приступить к разработке игр.

Pygame совершенно бесплатный и находится в открытом доступе. Он включает в себя библиотеки компьютерной графики и работы со звуком, которые вы можете использовать для внедрения интерактивного функционала в ваше приложение.

Вам доступны десятки игр, которые вы можете создать при помощи библиотеки. Что-бы вы не хотели придумать, чувствуйте себя комфортно и делитесь своими работами в сообществе Pygame!

#9: Выберите свое собственное приключение

Если вам больше по духу повествование, то у вас все еще масса инструментов, чтобы создать нечто крутое в Python.
Язык очень прост для написания, что делает его идеальной средой для разработки интерактивного чтива. С этим бесплатным руководством, вы сможете пошагово ознакомиться с написанием текстовых игр в Python.

Руководство подразумевает базовое понимание программирования в Python, и помогает проложить мост между тем, что вы уже знаете и неизведанными землями для построения приложения.

Если вы хотите, чтобы ваша история вышла на новый уровень, вы можете использовать движок, вроде RenPy, чтобы добавить звуки и изображения в вашу игру, создав визуальную новеллу с полным погружением. (После этого, вы можете выложить игру в Steam и посмотреть, как она расходится! Лучший способ получить отзыв о вашей работе – создать собственный релиз на мировом рынке. )

#10: Скажите “Привет, мир!” машинному обучению

Машинное обучение может быть фундаментальной областью в понимании искусственного интеллекта. Однако, в этой сфере легко запутаться, так как она постоянно развивается и меняется.
К счастью, в вашем распоряжении имеются онлайн ресурсы, которые могут помочь освоиться, перед тем как нырнуть с головой в мир под названием data science. Это руководство создано Джейсоном Браунли, и является хорошим примером введением в использование Python для машинного обучения.

Вы пройдетесь по ряду базовых алгоритмов машинного обучения, как и по библиотекам Python, которые помогут вам в составлении прогнозов.

Руководство очень простое и в нем легко ориентироваться. Вы можете окончить его всего за несколько часов. По окончанию курса, у вас будет общее представление о том, как использовать Python в науке данных.

Когда вы будете уверены в том, что можно нырять с головой, можете ознакомиться с этими руководствами, где вы сможете научиться анализировать отпечатки, создавать визуализации, распознавать речь и лица, и все это в Python!

#11: Бросаем вызов!

Если вы не уверены в том, что готовы окунаться в некоторые крупные проекты, упомянутые ранее, при этом мелкие вас не очень интересуют, вы можете думать: а чем еще можно заняться?

Кодерские задачки могут помочь вам попрактиковаться в навыках работы в Python и получить поверхностное представление обо всем спектре вещей, которые вы можете делать в Python,
Проще говоря: вам предоставят проблему, и вам нужно найти решение, в котором используется Python.

У вас будет шанс разработать решения, которые имеют смысл для вас, при этом у вас есть возможность углубиться в язык Python при помощи подсказок. Так вы получите представление о том, какие модули вам нужно импортировать, чтобы решить проблему.

Кодовые челенджы – это хороший способ освоить наибольшее количество библиотек, методов и фреймворков. Вы гарантированно найдете что-нибудь, что зацепит ваш интерес, и захотите уделять этому свободное время. Вы можете вернуться к этому списку и найти то, что зажгло в вас интерес, когда вы использовали это в одном из челенджей.

Чтобы начать, попробуйте одно из следующих, чтобы оценить свои силы:

  • Python Challenge. Более 20 доступных уровней. Создавайте простые скрипты в Python, чтобы решить уровень. По интернету есть разбросанные подсказки, но старайтесь искать решение самостоятельно!
  • PyBites Code Challenge. Включает в себя 50 задач, и количество растет! Эти задачи направлены на то, чтобы вы научились работать в Python для создания приложений, которые будут решать определенные проблемы.

Если вы предпочитаете программировать в таких задачах самостоятельно вместо пошаговых инструкций, то не будет лишним иметь под рукой вспомогательный ресурс.

Книга Python Tricks – это отличный источник информации, который поможет при работе с задачами. В книге рассматриваются малоизвестные части Python, на основании которых и формируются задачи.

Чего (скорее всего) не стоит делать в Python?

Очевидно, что Python – чрезвычайно универсальный язык, с которым вы можете делать массу вещей. Но вы не можете делать буквально всё. Фактически, есть определенные сферы, на которые Python не рассчитан.

С точки зрения интерпретируемого языка, у Python есть проблемы со взаимодействия с низкоуровневыми устройствами, такими как драйверами устройств. Например, у вас будут проблемы, если вы захотите написать операционную систему только на Python. Вам лучше связать его с С или С++ для низкоуровневых приложений.

Однако, даже это может быть проблемой не долго. В качестве подтверждения гибкости Python, есть люди, которые работают над проектами, которые расширяют юзабилити Python для низкоуровневых взаимодействий. MicroPython – это один из таких проектов, разрабатывающих низкоуровневые возможности Python.

Что если вашей идеи нет в этом списке?

Ничего страшного! Этот список вряд ли можно назвать исчерпывающим: существует огромное количество других инструментов и приложений, которые вы можете построить в Python, которые мы не рассмотрели в данной статье. Не думайте, что ваши идеи должны как-либо ограничиваться данным списком. Это просто база, с которой вы можете начать.

В этом видео вы можете почерпнуть несколько идей из других проектов, под которые Python хорошо заточен. Вы также можете ознакомиться с данным постом в блоге, автор которого подсказывает, где найти вдохновение для новых проектов Python.
Наконец, вы вольны искать и находить проекты, которые вам интересны.

Что делать дальше?

Ну, вот и все! Одиннадцать путей от новичка в Python до прожженного питониста!
Неважно, с чего вы хотите начать, вам открыты бесчисленные проспекты для разработки ваших навыков программирования. Начинайте с чего угодно! Родилась идея, которой нет в этом списке? Поделитесь в комментариях! Вы можете предложить идеальный проект для программиста-побратима.

Если вы застряли и ищете толчок в нужном направлении, поговорите об этом! Программирование не обязательно должно быть одиночным делом.

Если вы ищете способ задать вопрос и получить быстрый ответ от профессионалов – Python Форум всегда свободен. Это частное сообщество поможет вам найти контакт с теми, кто поможет вам пройти через возникшие стены, на которые вы наткнулись, работая в Pyhton.

Vasile Buldumac

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: [email protected]

Образование
Universitatea Tehnică a Moldovei (utm.md)

  • 2014 — 2018 Технический Университет Молдовы, ИТ-Инженер. Тема дипломной работы «Автоматизация покупки и продажи криптовалюты используя технический анализ»
  • 2018 — 2020 Технический Университет Молдовы, Магистр, Магистерская диссертация «Идентификация человека в киберпространстве по фотографии лица»

Сферы применения языка python

Python – это не просто язык программирования. Это целый мир со своими возможностями, трудными задачами и способами их решений. Новичку, который только начал знакомство с языком, довольно трудно осознать, в каких областях могут пригодиться его знания.

На самом деле, выбор довольно огромный. Python с каждым днем всё активнее завоевывает рынок, и на сегодняшний день он занимает одну из лидирующих позиций среди все остальных языков, соревнуясь за первенство с «монолитами» индустрии.

Конечно, Питон никогда не сможет заменить низкоуровневые C и C++, ведь именно они способны практически полностью контролировать процессор, не займет место Java, предназначенный для разработки сложнейших приложений. Также, Python нельзя назвать аналогом JavaScript, который поддерживается огромной долей сайтов.

Но почему Питон всё ещё движется к своему Олимпу? По какой причине его не вытиснили конкуренты? Ведь даже сам создатель Python, Гвидо ван Россум, в далеком 1989 году заявил, что не пророчит своему языку популярность на рынке.

На самом деле, с Питоном всё максимально прозрачно – он простой и универсальный, поэтому может применяться для работы по многим направлениям.

Web-разработка

На Питоне можно делать весь backend интернет-ресурса, который будет выполняться на сервере. Делается это при помощи специальных фреймворков (Django и Flask), написанных на этом языке. С их помощью упрощается процесс обработки адресов, обращение к базам данный и создание HTML, отображающихся на пользовательских страницах.

Онлайн-курс Python-разработчик

За 7 месяцев поможем освоить профессию Python-разработчика: от Git и алгоритмов до django и unit-тестирования

Узнать больше →

На сегодняшний день сторонними разработчиками написано большое количество дополнительного инструментария, направленно на реализацию сетевых приложений. К примеру, инструмент HTMLGen позволяет создавать готовые классы под страницу на HTML, используя для этого язык Питон. А пакет mod_python облегчает запуск сценариев Apache, обеспечивая при этом стабильную работу шаблонов Python Server Pages.

Графический интерфейс

Если говорить о визуальной составляющей в сфере IT, то и здесь Python может показать себя как вполне эффективный инструмент, решающий массу задач. Создавая современные графические интерфейсы на Питоне, можно легко подстроиться под стилистику ОС, в чьей среде создается приложение. Специально для этих целей были созданы дополнительные библиотеки для построения интерфейса – PythonCard и Dabo, облегчающие процесс работы.

Базы данных

Разработчики современной версии Питона создали максимально простой и понятный доступ практически к любым базам данных. Так, на сегодняшний день, в рабочей среде языка находится программный интерфейс, который позволяет пользоваться базами прямиком из сценария с помощью запросов SQL. Также, код, написанный на Python, может с минимальными доработками использоваться для баз данных MySQL и Oracle.

Системное программирование

Ещё одна монетка в копилку возможностей Python – это интерфейсы языка, которые позволяют управлять службами операционных систем Windows, Linux и др. Благодаря этому, Питон открывает массу возможностей для создания портативных программ. Не секрет, что этот язык применяется для написания приложений, используемых системными администраторами. Таким образом, Python ускоряет поиск и открытие файлов, запуск приложений, облегчает вычисления и многое другое.

Сложные вычислительные процессы

Это та самая сфера, где Питон может потягаться в своих возможностях с FORTRAN или C++. Специальное расширение NumPy, написанное для математических расчётов, прекрасно функционирует с массивами, интерфейсами уравнений и другими данными. Как только расширение устанавливается на компьютер, Python без проблем проходит интеграцию с библиотеками формул.

Но NumPy предназначен не только для вычислений. Помимо своей основной задачи, с его помощью можно создавать анимированные элементы и прорисовывать объекты в среде 3D, производя при этом параллельные вычисления. Например, популярное дополнение ScientificPython может похвастаться собственными библиотеками, которые созданы для вычислительных процессов в сфере науки.

Помимо расчётов, Python позволяет визуализировать полученные данные, что довольно удобно.

Машинное обучение

Помимо основного инструментария, у Python есть дополнительные библиотеки и фреймворки, позволяющие работать в области машинного обучения. Особой популярностью пользуются scikit-learn и TensorFlow. Scikit-learn отличается тем, что в него уже встроены самые распространенные алгоритмы обучения. TensorFlow, в свою очередь – это низкоуровневая библиотека, которая открывает возможности для создания алгоритмов пользователя.

Процессы машинного обучения, основанные на языке программирования Python, помогают реализовывать системы распознавания лиц и голоса, создавать нейронные сети, глубокое обучение и многое другое.

Автоматизация процессов

Сегодня одним из самых востребованных способов использования языка Питон является создание мелких скриптов, автоматизирующих некоторые рабочие процессы. Например, можно написать вполне простой код, который будет «самостоятельно» работать с письмами на электронной почте. Если человеку необходимо отсортировывать письма с определенными ключевыми словами или фразами, то вручную это сделать довольно проблематично, а вот скрипт справится с этой задачей без проблем.

Почему для этого лучше всего использовать именно Python? Во-первых, он отличается вполне простым синтаксисом, который позволяет с легкостью разрабатывать сценарии. А во-вторых, сам код не проходит компиляцию перед запуском, что заметно облегчает процесс отладки.

Игровая индустрия

Зря многие люди недооценивают геймдейв, ведь именно благодаря нему появилось так много гаджетов, разработок и значительно улучшилась графика. Конечно, для крупных проектов Python вряд ли подойдет, его инструментарий в данной области несколько ограничен, но для фанатов этого языка собрать небольшие приложения и инди-игрушки — не такая уж и сложная задача. Для мультиплатформенных игр лучше всего подойдет движок Unity, управляемый с помощью языка C#. Этот инструмент как раз и создан для таких целей.


Изучая Python, не стоит бояться пробовать свои силы, выполняя простые задачи, создавая элементарные скрипты, даже если они кажутся вам слишком шаблонными. Ведь только таким образом вы сможете подобрать для себя подходящее направление, в котором захотите развиваться и строить карьеру.

У нас вы можете пройти курсы по изучению программирования на Python.

Для чего используется Python? | 10 практических применений Python

Узнайте о некоторых наиболее популярных применениях Python, пока мы выясняем, почему он такой популярный и разнообразный язык программирования.

Поделиться этой публикацией

Несмотря на то, что Python начинался как хобби-проект, названный в честь Монти Пайтона, в настоящее время Python является одним из самых популярных и широко используемых языков программирования в мире. Помимо веб-разработки и разработки программного обеспечения, Python используется для анализа данных, машинного обучения и даже дизайна.

Мы подробно рассмотрим некоторые области применения Python, а также объясним, почему это такой популярный и универсальный язык программирования. Мы также выбрали некоторые из наших лучших курсов для изучения Python и некоторые идеи для проектов Python для начинающих.

Python — основы

Прежде чем мы углубимся в детали того, что вы можете делать с помощью Python, давайте разберемся с некоторыми основными моментами. Если вы надеетесь выучить язык программирования, эти основы помогут вам понять, почему Python может быть отличным выбором.

Что такое Python?

Как мы указывали в нашей итоговой публикации о том, для чего используются различные языки программирования, Python — это объектно-ориентированный (основанный на данных), высокоуровневый (более простой для понимания людьми) язык программирования. Впервые запущенный в 1992 году, он построен таким образом, что писать и понимать его относительно интуитивно. Таким образом, это идеальный язык программирования для тех, кто хочет быстрой разработки.

Если вам интересно, кто использует Python, вы обнаружите, что многие крупнейшие организации в мире используют его в той или иной форме. NASA, Google, Netflix, Spotify и многие другие используют этот язык для поддержки своих сервисов.

Почему Python так популярен?

Согласно индексу TIOBE, который измеряет популярность языков программирования, Python является третьим по популярности языком программирования в мире, уступая только Java и C. Существует множество причин повсеместного распространения Python, в том числе: 

  • Простота использования . Для тех, кто плохо знаком с кодированием и программированием, Python может стать отличным первым шагом. Его относительно легко освоить, что делает его отличным способом начать накапливать свои знания в области программирования.
  • Его простой синтаксис . Python относительно легко читать и понимать, так как его синтаксис больше похож на английский. Его простая компоновка означает, что вы можете понять, что делает каждая строка кода.
  • Его процветающее сообщество . Поскольку это язык с открытым исходным кодом, любой может использовать Python для написания кода. Более того, существует сообщество, которое поддерживает и развивает экосистему, добавляя свои собственные материалы и библиотеки.
  • Его универсальность . Как мы рассмотрим более подробно, у Python есть много применений. Если вы заинтересованы в визуализации данных, искусственном интеллекте или веб-разработке, вы можете найти применение этому языку.

Зачем изучать Python?

Итак, мы знаем, почему Python сейчас так популярен, но зачем вам учиться его использовать? Помимо упомянутой выше простоты использования и универсальности, есть несколько веских причин для изучения Python: 

  • Python-разработчики пользуются спросом . В самых разных областях есть спрос на тех, кто владеет навыками Python. Если вы хотите начать или изменить свою карьеру, это может оказаться жизненно важным навыком, который вам поможет.
  • Это может привести к хорошо оплачиваемой карьере . Данные показывают, что средняя годовая зарплата тех, кто владеет навыками Python, в Великобритании составляет около 65 000 фунтов стерлингов.
  • Будет много вакансий . Учитывая, что Python можно использовать во многих новых технологиях, таких как искусственный интеллект, машинное обучение и анализ данных, вполне вероятно, что это навык, ориентированный на будущее. Изучение Python сейчас может принести вам пользу в вашей карьере.

Сколько времени нужно, чтобы изучить Python?

Как мы уже упоминали, Python — относительно простой язык программирования по сравнению со многими другими. Таким образом, можно изучить основы всего за несколько недель. Многие из наших коротких курсов, таких как «Начало работы с Python», длятся 6-8 недель, при этом каждую неделю требуется всего несколько часов обучения.

Если вы ищете более подробное исследование, есть также доступные варианты. Наш экспертный курс по глубокому обучению и программированию на Python занимает 21 неделю, при этом каждую неделю требуется 5-6 часов обучения.

Для чего используется Python?

Понятно, что Python — популярный и востребованный навык для изучения. Но для чего используется программирование на Python? Мы уже кратко затронули некоторые области, в которых его можно применять, и мы расширили эти и другие примеры Python ниже. Python можно использовать для:  

1. ИИ и машинное обучение 

Поскольку Python является таким стабильным, гибким и простым языком программирования, он идеально подходит для различных проектов машинного обучения (МО) и искусственного интеллекта (ИИ). Фактически, Python является одним из любимых языков среди специалистов по данным, и существует множество доступных библиотек и пакетов для машинного обучения и искусственного интеллекта Python.

Если вас интересует это применение Python, наши программы Deep Learning и Python Programming for AI with Microsoft Azure ExpertTrack помогут вам развить свои навыки в этих областях. Вы можете открыть для себя возможности использования Python и глубокого обучения, одновременно продвигая свою карьеру в области искусственного интеллекта.

2. Аналитика данных 

Подобно искусственному интеллекту и машинному обучению, аналитика данных — еще одна быстро развивающаяся область, в которой используется программирование на Python. В то время, когда мы создаем больше данных, чем когда-либо прежде, нужны те, кто может собирать, обрабатывать и систематизировать информацию.

Python для науки о данных и аналитики имеет смысл. Язык прост в освоении, гибок и хорошо поддерживается, что означает, что его относительно быстро и легко использовать для анализа данных. При работе с большими объемами информации это полезно для манипулирования данными и выполнения повторяющихся задач.

Вы можете узнать об анализе данных с помощью Python с помощью нашего ExpertTrack, который поможет вам развить практические навыки анализа данных.

3. Визуализация данных 

Визуализация данных — еще одна популярная и развивающаяся область интересов. Опять же, это играет на многих сильных сторонах Python. Помимо гибкости и открытого исходного кода, Python предоставляет множество графических библиотек со всевозможными функциями.

Независимо от того, хотите ли вы создать простое графическое представление или более интерактивный график, вы можете найти библиотеку, соответствующую вашим потребностям. Примеры включают Pandas Visualization и Plotly. Возможности огромны, что позволяет преобразовывать данные в осмысленные идеи.

Если визуализация данных с помощью Python кажется привлекательной, ознакомьтесь с нашим 12-недельным курсом ExpertTrack по этой теме. Вы узнаете, как использовать библиотеки Python для интерпретации и анализа наборов данных.

4. Приложения для программирования 

С помощью Python можно программировать любые приложения. Язык общего назначения можно использовать для чтения и создания файловых каталогов, создания графических интерфейсов и API и многого другого. Будь то приложения для блокчейна, аудио- и видеоприложения или приложения для машинного обучения, вы можете создавать их все с помощью Python.

У нас также есть ExpertTrack по программированию приложений с помощью Python, который поможет вам начать карьеру программиста. В течение 12 недель вы получите представление о том, как использовать Python, и начнете программировать свои собственные приложения с его помощью.

  • CloudSwyft Global Systems, Inc.

    Наука о данных в Microsoft Azure с использованием программирования на Python

5. Веб-разработка 

Python — отличный выбор для веб-разработки. Во многом это связано с тем, что существует множество сред веб-разработки Python, таких как Django, Pyramid и Flask. Эти фреймворки использовались для создания сайтов и сервисов, таких как Spotify, Reddit и Mozilla.

Благодаря обширным библиотекам и модулям, входящим в состав фреймворков Python, такие функции, как доступ к базе данных, управление контентом и авторизация данных, возможны и легко доступны. Учитывая его универсальность, неудивительно, что Python так широко используется в веб-разработке.

6. Разработка игр 

Несмотря на то, что Python далеко не является отраслевым стандартом в разработке игр, он все же находит применение в этой отрасли. С помощью языка программирования можно создавать простые игры, а значит, он может быть полезным инструментом для быстрой разработки прототипа. Точно так же некоторые функции (например, создание дерева диалогов) возможны в Python.

Если вы новичок в Python или в разработке игр, вы также можете узнать, как создать текстовую игру на Python. При этом вы можете работать над различными навыками и совершенствовать свои знания в различных областях.

7. Разработка языка

Простой и элегантный дизайн Python и его синтаксис означают, что он вдохновил на создание новых языков программирования. Такие языки, как Cobra, CoffeeScript и Go, используют синтаксис, аналогичный Python.

Этот факт также означает, что Python является полезным языком шлюза. Итак, если вы новичок в программировании, понимание Python может помочь вам легче перейти в другие области.

8. Финансы

Python все чаще используется в мире финансов, часто в таких областях, как количественный и качественный анализ. Это может быть ценным инструментом для определения тенденций и прогнозов цен на активы, а также для автоматизации рабочих процессов с использованием различных источников данных.

Как уже упоминалось, Python — идеальный инструмент для работы с большими наборами данных, и существует множество библиотек, помогающих в компиляции и обработке информации. Таким образом, это один из предпочтительных языков в финансовой сфере.

  • Фонд малины Пи

    Объектно-ориентированное программирование на Python: создайте свою собственную приключенческую игру

  • Калифорнийский университет, Ирвин

    Промежуточный Python

9. SEO

Еще одна немного неожиданная запись в нашем списке применений Python находится в области поисковой оптимизации (SEO). Это область, которая часто выигрывает от автоматизации, что, безусловно, возможно с помощью Python. Будь то внедрение изменений на нескольких страницах или категоризация ключевых слов, Python может помочь.

Новые технологии, такие как обработка естественного языка (NLP), также могут быть актуальны для тех, кто работает в SEO. Python может быть мощным инструментом для развития этих навыков НЛП и понимания того, как люди выполняют поиск и как поисковые системы возвращают результаты.

10. Дизайн  

Когда вы спрашивали «Для чего используется Python?», вы, вероятно, не ожидали, что в списке появится дизайн. Однако Python можно использовать для разработки приложений для графического дизайна. Удивительно, но этот язык используется во многих программах для создания 2D-изображений, таких как Paint Shop Pro и Gimp.

Python используется даже в программах для 3D-анимации, таких как Lightwave, Blender и Cinema 4D, что свидетельствует о том, насколько универсален этот язык.

Проекты Python для начинающих

Итак, если вам интересно, что делать с Python и кто использует Python, мы дали множество идей о том, как его использовать. Но что, если вы только начинаете изучать язык и хотите стать разработчиком Python?

Ниже мы изложили некоторые идеи проекта Python для начинающих. Это может помочь вам развить свои знания и испытать свои способности в языке программирования: 

  • Создайте игру-угадайку 
  • Разработка текстовой приключенческой игры
  • Создайте простой калькулятор Python
  • Напишите простой интерактивный тест
  • Сделать будильник

После того, как вы освоите основы Python, каждый из них может бросить вам вызов и помочь отточить уже полученные навыки.

Заключительные мысли

На этом мы завершаем наш обзор того, для чего можно использовать программирование на Python. Как видите, для этого популярного языка существует множество приложений с широкой сетью поддержки и разнообразными библиотеками, которые могут помочь.

Есть много причин, по которым вы можете начать изучать Python. Это перспективный и востребованный навык, который необходим во всех отраслях. Более того, у нас есть широкий выбор курсов Python, которые помогут вам освоить основы или развить некоторые более конкретные навыки.

  • Фонд малины Пи

    Программирование 101: введение в Python для преподавателей

  • Фонд малины Пи

    Программирование 102: думай как компьютерный ученый

  • Фонд малины Пи

    Программирование 103: Сохранение и структурирование данных

Приложения для Python | Python.

org

Примечание: Хотя JavaScript не является обязательным для этого веб-сайта, ваше взаимодействие с содержимым будет ограничено. Пожалуйста, включите JavaScript для полного опыта.

Пожертвовать

Поиск по сайту

Python используется во многих областях приложений. Вот
выборка.

  • Списки индекса пакетов Python
    тысячи сторонних модулей для Python.

Python предлагает множество вариантов для веб-разработки:

  • Фреймворки, такие как Django и Pyramid.
  • Микрокаркасы, такие как Колба и Бутылка.
  • Расширенные системы управления контентом, такие как Plone и django CMS.

Стандартная библиотека Python поддерживает многие интернет-протоколы:

  • HTML и XML
  • JSON
  • Обработка электронной почты.
  • Поддержка FTP,
    IMAP и
    другие интернет-протоколы.
  • Простой в использовании интерфейс сокета.

А в Package Index есть еще больше библиотек:

  • Запросы, мощный
    Библиотека HTTP-клиента.
  • Красивый суп,
    синтаксический анализатор HTML, который может обрабатывать все виды странного HTML.
  • Feedparser для разбора
    RSS/Atom-каналы.
  • Парамико, реализация
    протокол SSh3.
  • Twisted Python, фреймворк для
    асинхронное сетевое программирование.

Python широко используется в научных и числовых вычислениях:

  • SciPy — набор пакетов для математики,
    науки и техники.
  • Pandas — это анализ данных и
    библиотека моделирования.
  • IPython — мощная интерактивная оболочка,
    имеет удобное редактирование и запись рабочего сеанса, а также
    поддерживает визуализации и параллельные вычисления.
  • Курс по столярному делу с программным обеспечением преподает
    базовые навыки для научных вычислений, проведения учебных курсов и предоставления
    учебные материалы в открытом доступе.

Python — превосходный язык для обучения программированию, как на начальном этапе
уровне и на более продвинутых курсах.

  • Такие книги, как «Как думать как компьютерщик»,
    Программирование на Python: введение в информатику и
    Практическое программирование.
  • Специальная группа по образованию
    хорошее место для обсуждения вопросов обучения.

Библиотека Tk GUI
входит в состав большинства бинарных дистрибутивов Python.

Доступны некоторые наборы инструментов, которые можно использовать на нескольких платформах
отдельно:

  • wxWidgets
  • Kivy, для написания мультитач-приложений.
  • Qt через pyqt или pyside

Также доступны наборы инструментов для конкретной платформы:

  • GTK+
  • Классы Microsoft Foundation через расширения win32

Python часто используется в качестве языка поддержки для разработчиков программного обеспечения,
для контроля и управления сборкой, тестирования и многими другими способами.

Читайте также: