КАТАЛОГ ТОВАРОВ

Срок доставки товара в течении 1-3 дней !!!

 

ПОЛЬЗОВАТЕЛЬ
КОРЗИНА

Процессоры, ядра и потоки. Топология систем. Четырех ядерные процессоры


Что означает "двухядерный", "четырехядерный" и "мультиядерный" процессор

Подробности сентября 07, 2017 Просмотров: 5884 Ядра процессора

Когда вы покупаете новый ноутбук или строите компьютер, процессор является самым важным решением. Но там есть много жаргона, особенно что касается ядер. Какой процессор выбрать: двухъядерный, четырехъядерный, шестиядерный или восьмиядерный. Прочитайте статью чтобы понять, что это на самом деле означает.

 

Двухъядерный или четырехъядерный, как можно проще

Давайте сделаем все просто. Вот все, что вам нужно знать:

  • Существует только один процессорный чип. У этого чипа может быть одно, два, четыре, шесть или восемь ядер.
  • В настоящее время 18-ядерный процессор - это лучшее, что можно получить на потребительских ПК.
  • Каждое «ядро» является частью чипа, который выполняет обработку. По сути, каждое ядро является центральным процессором (CPU).

 

Скорость

Теперь простая логика диктует, что больше ядер сделает ваш процессор быстрее в целом. Но это не всегда так. Это немного сложнее.

Больше ядер дают большую скорость только если программа может разделить свои задачи между ядрами. Не все программы предназначены для разделения задач между ядрами. Подробнее об этом позже.

Тактовая частота каждого ядра также является решающим фактором скорости, как и архитектура. Более новый двухъядерный процессор с более высокой тактовой частотой часто превосходит старый четырехъядерный процессор с более низкой тактовой частотой.

 

Потребляемая мощность

Больше ядер также приводит к более высокому потреблению энергии процессором. Когда процессор включен, он подает питание на все ядра, а не только на задействованные.

Производители чипов стараются снизить энергопотребление и сделать процессоры более энергоэффективными. Но, общее правило гласит что, четырехъядерный процессор будет потреблять больше энергии с вашего ноутбука нежели двухъядерный (и, следовательно, быстрее разряжается аккумулятор).

 

Выделение тепла

Каждое ядро, влияет на тепло, генерируемое процессором. И опять же, общее правило, больше ядер приводит к более высокой температуре.

Из-за этого дополнительного тепла, производители должны добавить лучшие радиаторы или другие решения для охлаждения.

 

Цена

Больше ядер не всегда выше цены. Как мы уже говорили ранее, в игру вступают тактовая частота, архитектурные версии и другие соображения.

Но если все остальные факторы одинаковы, тогда больше ядер будет получать более высокую цену.

 

Все о программном обеспечении

Вот маленький секрет, который производители процессоров не хотят, чтобы вы знали. Речь идет не о том, сколько ядер вы используете, а о том, какое программное обеспечение вы используете на них.

Программы должны быть специально разработаны, чтобы использовать преимущества нескольких процессоров. Такое «многопоточное программное обеспечение» не так распространено, как вы думаете.

Важно отметить, что даже если это многопоточная программа, также важно то, для чего она используется. Например, веб-браузер Google Chrome поддерживает несколько процессов, а также программное обеспечение для редактирования видео Adobe Premier Pro.

Adobe Premier Pro предлагает различные ядра для работы над различными аспектами вашего редактирования. Учитывая многие слои, связанные с редактированием видео, это имеет смысл, так как каждое ядро может работать над отдельной задачей.

Аналогично, Google Chrome предлагает разным ядрам работать на разных вкладках. Но в этом и заключается проблема. После того как вы откроете веб-страницу на вкладке, она обычно статична после этого. Нет необходимости в дальнейшей обработке; остальная часть работы заключается в сохранении страницы в ОЗУ. Это означает, что даже если ядро можно использовать для закладки фона, в этом нет никакой необходимости.

Этот пример Google Chrome представляет собой иллюстрацию того, как даже многопоточное программное обеспечение может не дать вам большой реальный прирост производительности.

 

Два ядра не удваивают скорость

Итак, допустим, у вас есть правильное программное обеспечение, и все ваше другое оборудование одинаково. Будет ли четырехъядерный процессор в два раза быстрее, чем двухъядерный процессор? Нет.

Увеличение ядер не затрагивает программную проблему масштабирования. Масштабирование до ядер - теоретическая способность любого программного обеспечения назначать правильные задачи на правильные ядра, поэтому каждое ядро вычисляет с оптимальной скоростью. Это не то, что происходит на самом деле.

Разделение задач на ядра

В действительности задачи разбиваются последовательно (что делает большинство многопоточных программ) или случайным образом. Например, скажем, вам нужно выполнить три задачи, чтобы закончить действие, и у вас есть пять таких действий. Программное обеспечение сообщает ядру 1 решить задачу 1, в то время как ядро 2 решает вторую, ядро 3 третью; между тем, ядро 4 простаивает.

Если третья задача самая сложная и длинная, тогда было бы разумно, чтобы программное обеспечение разделило третью задачу между ядрами 3 и 4. Но это не то, что она делает. Вместо этого, хотя ядро 1 и 2 выполнят задачу быстрее, действие должно будет дождаться завершения ядра 3, а затем вычислить результаты ядер 1, 2 и 3 вместе.

Все это окольный способ сказать, что программное обеспечение, как и сегодня, не оптимизировано, чтобы в полной мере использовать преимущества нескольких ядер. И удвоение ядер не равно удвоению скорости.

 

Где больше ядер реально помогут?

Теперь, когда вы знаете, что делают ядра и их ограничения в повышении производительности, вы должны спросить себя: «Нужно ли мне больше ядер?» Ну, это зависит от того, что вы планируете с ними делать.

 

Игровой компьютер

Если вы часто играете в компьютерные игры, то больше ядер на вашем ПК несомненно вам пригодятся. Подавляющее большинство новых популярных игр от крупных студий поддерживают многопоточную архитектуру. Видеоигры по-прежнему в значительной степени зависят от того, какая видеокарта у вас стоит, но многоядерный процессор тоже помогает.

Игровой компьютер 

Редактирование видео или аудио

Для любого профессионала, который работает с видео или аудиопрограммами, больше ядер будет полезно. Большинство популярных аудио- и видеомонтажных инструментов используют многопоточную обработку.

 Редактирование видео или аудио

Фотошоп и дизайн

Если вы дизайнер, то более высокая тактовая частота и больше кэш-памяти процессора будут увеличиваться скорость лучше, чем больше ядер. Даже самое популярное программное обеспечение для проектирования, Adobe Photoshop, в значительной степени поддерживает однопоточные или слегка поточные процессы. Множество ядер не будет значительным стимулом для этого.

 Фотошоп

Более быстрый веб-просмотр

Как мы уже говорили, наличие большего количества ядер не означает более быстрый просмотр веб-страниц. В то время как все современные браузеры поддерживают архитектуру многопроцессорных процессов, ядра помогут только в том случае, если ваши фоновые вкладки являются сайтами, для которых требуется большая вычислительная мощность.

 

Офисные задачи

Все основные приложения Office однопоточные, поэтому четырехъядерный процессор не будет увеличивать скорость.

 

Нужно ли вам больше ядер?

В целом, четырехъядерный процессор будет работать быстрее, чем двухъядерный процессор для общих вычислений. Каждая программа, которую вы открываете, будет работать на своем собственном ядре, поэтому, если задачи будут разделены, скорости будут лучше. Если вы используете много программ одновременно, часто переключайтесь между ними и назначаете им свои собственные задачи, выбирайте процессор с большим количеством ядер.

Просто знайте это: общая производительность системы - это одна из областей, в которой слишком много факторов. Не ожидайте магического повышения производительности, заменив всего один компонент, даже такой как процессор.

Читайте также

 

 

 

 

juice-health.ru

Три против четырех. Middle-end решения AMD — IT-блог

Пока в high-end секторе процессорной индустрии правит бал Intel вооруженная  микроархитектурой Nehalem, в middle-end и low-end нишах  идет жаркая борьба за покупателей. У компании Advanced Micro Devices (AMD) всегда получалось  предложить  пользователям хорошую производительность за разумную стоимость.  С выходом на рынок  Athlon II у компании появилась надежды  на укрепление своих пошатнувшихся позиций в корпоративном секторе, а также в среде пользователей умеющих считать свои денежки. :).

В сегодняшней заметке рассмотрим возможности и производительность в нескольких тестах двух многоядерных процессоров из линейки Athlon II  которые предлагает AMD.

AMD Athlon II X4 620 и  AMD Athlon II X3 425

Для начала познакомимся с общими характеристиками процессоров.

Сравнительная таблица
Процессор AMD Athlon™ II X3 425 AMD Athlon™ II X4 620
Ядро Rana Propus
Техпроцесс 45 нм 45 нм
Частота ядра, GHz 2,7 2,6
Количество ядер 3 4
Кэш L1/L2 64/64 64/64
Кэш L3 3 х 512 4 х 512
Множитель 13,5 13
Сокет AM3 AM3
TDP 95 Вт 95 Вт
Средняя цена $83 $106

В противовес тестируемым процессорам хотел поставить противника из стана Intel.  К сожалению в качестве конкурента в наличии был только E5400, поэтому от такой конкуренции пришлось отказаться так как по цене было бы более справедливо поставить E6500, но на момент теста его в наличии не было. Поэтому процессор из лагеря Intel был снят с дистанции по причине несоответствия весовой категории. ))

Более близкое знакомство начнем с самого маленького четырехядерника AMD. Это — Athlon II x4 620.

Как видно со скриншота CPU-Z процессор использует степпинг ядра С2, хотя на сегодняшний день четырехядерники Deneb выпускаются на обновленном степпинге С3 что дает больший разгонный потенциал процессора.  Как известно четырехядерные процессоры использующие ядро Deneb гордо именуются Phenom II и стоят примерно в 2 раза дороже своих четырехядерных собратьев из линейки Athlon II хотя построены на одной и той же микроархитектуре. В чем же различие?  Ответ на этот вопрос отпадет сам собой если взглянуть на фотографии ядер Propus и Deneb.

ядро Deneb

ядро Propus

На фото отчетливо видно что кеш L3 у ядра Propus физически отсутствует.  Поэтому, к великому сожалению энтузиастов-любителей никакие ACC ни танцы с бубном не помогут разблокировать кеш L3 у бюджетных четырехядерников 6хх-0й серии. Его там попросту нет. :)

Второй тестируемый процессор — это AMD Athlon II X3 425.

По информации которую предоставила CPU-Z  видно что Athlon II x3 425 имеет ту же ревизию ядра что и Athlon II x4 620. Различие видно только в количестве задействованых ядер, и более высокой частоте. То есть можно сказать что Athlon II x3 425 основан на 4-х ядерном дизайне с отключенным одним ядром.

Тестовый стенд:

Системная плата: Gigabyte MA785G-UD3H.

Оперативная память: PVS24G8500ELKR2 Patriot Extreme Performance Viper Series DDR2 4GB (2 x 2GB) PC2-8500 Enhanced Latency DIMM Kit.

Видеадаптер: PowerColor PCS HD4770 512M GDDR5 (V1) (AX4770 512MD5-P)

Результаты тестов:

Математические бенчмарки:

Архиватор 7-zip работает с четным числом процессоров поэтому проигрыш 3-ч ядерника тут был очевиден, несмотря на немножко бОльшую частоту.

В архиваторе WinRar отставание х3 425 мизерно. Можно даже сказать что оба процессора идут нос в нос.

Никакого существенного преимущества 4-е ядро 620-му не дает. А х3 425 благодаря опять же чуть большей тактовой частоте, идет с четырехядерником на равных.

Популярный бенчмарк который вычисляет число Пи и делайет замер времени в тысячных долях секунды.

В этом тесте опять не заметно сколь либо впечатляющего преимущества 4-х ядерного процессора. Хотя с учетом того что у 3-х ядерного процессора частота больше можно было бы предположить что разрыв будет еще меньше.

Как известно данный бенчмарк очень хорошо оптимизирован под многопоточность. x264 Benchmark HD 3.0  кодирует видео  при помощи кодека x264, по стандарту сжатия H.264/MPEG-4 AVC. Тут уже прослеживается явное преимущество еще одного ядра. х4 620 далеко уходит вперед и трехядернику его уже не достать. Слишком большой разрыв в производительности.

Бенчмарк использующий многопоточность для просчета шахматных алгоритмов. В этом тесте 4-х ядерный Athlon II 620 выходит безусловным победителем. И думаю даже разгон не поможет 3-х ядерному процессору достать соперника в этом тесте.

Напоследок  еще один тест производительности из популярного пакета PC Mark Vantage.   Тест Memory Suite Score  замеряет скорость записи, чтения и копирования  разных размеров блоков памяти и измеряет латентность  подсистемы памяти. Разница не очень ощутима и думается что даже небольшой разгон позволит 3-х ядерному Athlon II догнать четырехядерника в этом тесте.

В заключение можно сказать что 3-х ядерные процессоры серии 4хх можно покупать если вы энтузиаст и собираетесь заняться оверклокингом. В добавок еще можно отметить тот нюанс что при удачном стечении обстоятельств и определенном везении можно из 3-ядерного процессора получить 4-х ядерный. Об этом много писано-переписано в энтернете, поэтому «что» и «как» делать, оставим за рамками этой небольшой заметки.  4-х ядерный Athlon II судя по производительности подойдет  большинству спокойных домашних пользователей, в частности тем кто имеет домашнюю цифровую камеру и время от времени занимается монтажем видео. В целом оба процессора предоставляют хорошую производительность за свою цену. За рамками остались тесты в игровых приложениях. Признаться честно сколь-либо интересных и различающихся результатов при прогоне бенчмарка S.T.A.L.K.E.R. — Зов Припяти получено не было,  поэтому игровые тесты исключил намеренно. Все же для игроков я бы лично рекомендовал бы серию Phenom II. Эта линейка процессоров обладает большим кешем L3 который в игровых приложениях может дать большую производительность чем количество ядер.

Спасибо за внимание. :)

hsd.net.ua

Чем восемь ядер процессора смартфона лучше четырех? - Блоги

Qualcomm Snapdragon

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. Будущее в сфере процессоров смартфонов уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Процессор

Эти пояснения были опубликованы Йоном Манди (Jon Mundy) в статье «Octa-core vs Quad-core: Does it make a difference?» на страницах ресурса Trusted Reviews.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и » четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.

Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как HTC One M9 и G Flex 2, ставший большим достижением компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Процессор

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения выйдут из моды.

www.playground.ru

Процессоры, ядра и потоки. Топология систем / Блог компании Intel / Хабр

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Используемая далее терминология используется в документации процессорам Intel. Другие архитектуры могут иметь другие названия для похожих понятий. Там, где они мне известны, я буду их упоминать.

Цель статьи — показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, © в статье Мой комментарий объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.
Процессор
Конечно же, самый древний, чаще всего используемый и неоднозначный термин — это «процессор».

В современном мире процессор — это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает, что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память — RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.

К взлёту готов! Intel® Desktop Board D5400XS
Ядро
Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах — как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент — схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер, во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.

Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.
Гиперпоток
До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология — гипертреды или гиперпотоки, — Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT — это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния — регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня — это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии. Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это — частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение — здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре — уникальная для IA-32 конфигурация.

Логический процессор
Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x, y, z), где x — это число процессоров, y — число ядер в каждом процессоре, а z — число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией — устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) — ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая — два ядра, а третья — всего лишь два потока.

Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?

Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений — им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии
Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи [2]:

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к [2], в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID Local APIC (advanced programmable interrupt controller) — это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) — для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC.

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше — только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX[31:0] возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два — внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX[5:0] (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня — гиперпоток, ядро или процессор, — в ECX[15:8].

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, — все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB — не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI [3, 4].

Операционные системы и топология
Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo, а также выводе команды dmidecode. В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст[email protected]:~$ cat /proc/cpuinfo |grep 'processor\|physical\ id\|siblings\|core\|cores\|apicid' processor : 0 physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 processor : 1 physical id : 0 siblings : 4 core id : 0 cpu cores : 2 apicid : 1 initial apicid : 1 processor : 2 physical id : 0 siblings : 4 core id : 1 cpu cores : 2 apicid : 2 initial apicid : 2 processor : 3 physical id : 0 siblings : 4 core id : 1 cpu cores : 2 apicid : 3 initial apicid : 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст[email protected]:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: <groups> <group level="1" cache-level="0"> <cpu count="8" mask="0xff">0, 1, 2, 3, 4, 5, 6, 7</cpu> <children> <group level="2" cache-level="2"> <cpu count="8" mask="0xff">0, 1, 2, 3, 4, 5, 6, 7</cpu> <children> <group level="3" cache-level="1"> <cpu count="2" mask="0x3">0, 1</cpu> <flags><flag name="THREAD">THREAD group</flag><flag name="SMT">SMT group</flag></flags> </group> <group level="3" cache-level="1"> <cpu count="2" mask="0xc">2, 3</cpu> <flags><flag name="THREAD">THREAD group</flag><flag name="SMT">SMT group</flag></flags> </group> <group level="3" cache-level="1"> <cpu count="2" mask="0x30">4, 5</cpu> <flags><flag name="THREAD">THREAD group</flag><flag name="SMT">SMT group</flag></flags> </group> <group level="3" cache-level="1"> <cpu count="2" mask="0xc0">6, 7</cpu> <flags><flag name="THREAD">THREAD group</flag><flag name="SMT">SMT group</flag></flags> </group> </children> </group> </children> </group> </groups>

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

Скрытый текст

Также их предоставляет консольная утилита Sysinternals Coreinfo и API вызов GetLogicalProcessorInformation.

Полная картина
Проиллюстрирую ещё раз отношения между понятиями «процессор», «ядро», «гиперпоток» и «логический процессор» на нескольких примерах.Система (2, 2, 2)Система (2, 4, 1)Система (4, 1, 1)
Прочие вопросы
В этот раздел я вынес некоторые курьёзы, возникающие из-за многоуровневой организации логических процессоров.Кэши Как я уже упоминал, кэши в процессоре тоже образуют иерархию, и она довольно сильно связано с топологией ядер, однако не определяется ей однозначно. Для определения того, какие кэши для каких логических процессоров общие, а какие нет, используется вывод CPUID.4 и её подлистов. Лицензирование Некоторые программные продукты поставляются числом лицензий, определяемых количеством процессоров в системе, на которой они будут использоваться. Другие — числом ядер в системе. Наконец, для определения числа лицензий число процессоров может умножаться на дробный «core factor», зависящий от типа процессора! Виртуализация Системы виртуализации, способные моделировать многоядерные системы, могут назначить виртуальным процессорам внутри машины произвольную топологию, не совпадающую с конфигурацией реальной аппаратуры. Так, внутри хозяйской системы (1, 2, 2) некоторые известные системы виртуализации по умолчанию выносят все логические процессоры на верхний уровень, т.е. создают конфигурацию (4, 1, 1). В сочетании с особенностями лицензирования, зависящими от топологии, это может порождать забавные эффекты.

Спасибо за внимание!

Литература
  1. Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volumes 1–3, 2014. www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
  2. Shih Kuo. Intel® 64 Architecture Processor Topology Enumeration, 2012 — software.intel.com/en-us/articles/intel-64-architecture-processor-topology-enumeration
  3. OSDevWiki. MADT. wiki.osdev.org/MADT
  4. OSDevWiki. Detecting CPU Topology. wiki.osdev.org/Detecting_CPU_Topology_%2880x86%29

habr.com

Чётырёх ядерные процессоры! - 6 Ноября 2006

Прежде всего хочу дать краткое содержание статьи для тех читателей, которые сразу переходят к диаграммам производительности. Итак, Intel выпустила 4-ядерный процессор, который представляет собой два ядра Conroe упакованные в один корпус. Соответственно, в программах имеющих оптимизацию под многопоточность, данный процессор может обеспечить 3-кратный рост производительности. А в программах без такой оптимизации (например, 99% игр), его скорость будет на уровне Conroe.

Теперь рассмотрим новый процессор более подробно. Прежде всего, он называется Core 2 Extreme QX6700, имеет разъем LGA775 и теоретически должен быть совместим с широким кругом материнских плат. И хотя по официальной информации Intel данный процессор может работать только на платах с чипсетом i975X, мы не сомневаемся, что вскоре ведущие производители объявят о поддержке QX6700 платами на P965 и новых версиях nForce Intel Edition. Не исключена поддержка со стороны других чипсетов, поскольку для работы QX6700 необходимо наличие модуля питания платы соответствующего спецификациям VRM 11, а также поддержка со стороны BIOS.Каков смысл начинающегося перевода настольных компьютеров на процессоры с четырьмя ядрами? Основная цель – более эффективная обработка требовательных мультимедийных приложений, в том числе, развлекательного характера. Однако такой характер обеспечения прироста производительности несёт за собой необходимость в расширении программной поддержки многозадачности и многопоточности, поэтому тенденция завязана не только на аппаратную сторону вопроса, и, можно сказать, только начинается.Xотелось бы отметить: ключевые возможности архитектуры нового поколения, заложенные в описанных ранее технологиях Intel Wide Dynamic Execution, Intel Intelligent Power Capability, Intel Advanced Smart Cache, Intel Advanced Digital Media Boost и Intel Smart Memory Access, актуальны для 4-ядерного процессора Core 2 Extreme QX6700 так же, как и для его 2-ядерных собратьев. Разница лишь в том, что теперь новая архитектура Intel Core реализована в четырёх независимых ядрах на единой подложке, с 8 Мб кэша L2 (по 4 Мб на каждую пару ядер), что обеспечивает поддержку четырёх независимых физических тредов и теоретически позволяет добиться дополнительного прироста производительности (при адекватной работе программной части платформы).

В нашем тестировании мы использовали материнские платы Intel D975XBX2 ("Bad Axe") и ASUS P5W64 WS Pro (обе на чипсете i975X).Соответственно, при поддержке процессора QX6700 со стороны материнской платы, апгрейд осуществляется только заменой процессора. Дело в том, что компьютерная индустрия полностью готова к появлению 4-ядерных процессоров. На практике это выражается в наличии широкого ассортимента мощных кулеров, способных рассеивать 130-150 Вт, а также большого количества мощных (>500 Вт) блоков питания.

Примечательно, что появление процессора QX6700 произошло спустя всего три месяца после выхода ядра ConroeAllendale. Столь высокая скорость разработки объясняется тем, что данные процессоры разрабатывались практически одновременно. Уже на начальных этапах разработки, в спецификации Conroe было заложено требование совместимости в 2-ядерной конфигурации. Иными словами размещение на одном процессоре двух ядер Conroe (каждое из которых также является двухъядерным) позволяет выпустить 4-ядерный процессор. А невысокое энергопотребление Conroe позволяет уложиться в предел 150 Вт для 4-ядерной конфигурации (официальные данные о TDP для QX6700 говорят о 130 Вт потребляемой энергии).

Кстати, подобный подход к разработке двухъядерных процессоров продолжает традицию Intel. Точно также были выпущены процессоры Smithfield и Presler. Кстати, последний имеет два ядра Cedar Mill, выпущен по 65нм техпроцессу и до последнего времени был единственным процессором, который способен исполнять 4 потока команд одновременно. Дело в том, что оба интегрированных ядра имели поддержку технологии HyperThreading. Тем самым, будет особенно интересно сравнить производительность Presler c Core 2 Extreme QX6700.

В итоге, новый процессор получил кодовое название Kentsfield, и именно его используют различные диагностические утилиты.Как мы видим, тактовая частота процессора QX6700 равна 2,66 ГГц, частота системной шины 266 МГц (1066 МГц QPB) и, соответственно множитель = 10. Объем кэш-памяти второго уровня составляет 8 Мб (2 х 4 Мб), а штатное напряжение питания может колебаться от 1,25 В до 1,35 В в зависимости от степпинга.

Визуально, новый процессор мало, чем отличается от своих LGA775 собратьев. С лицевой стороны отличий нет вообще (кроме маркировки), а с обратной стороны Kentsfield можно узнать по конфигурации конденсаторов:Крупным планом:На время отвлечемся от процессора, и рассмотрим общий подход Intel к увеличению производительности своих CPU. Обжегшись на архитектуре NetBurst, которая требовала серьезного увеличения тактовой частоты, Intel изменила подход, и выпустила архитектуру нового поколения - Core 2 Duo. Последняя обеспечивает революционный скачок в производительности, при довольно низком энергопотреблении. При этом, как показали многочисленные эксперименты с разгоном, запас по наращиванию тактовой частоты просто колоссальный (до 3,4-3,6 ГГц). Последний фактор позволил бы без особых проблем штамповать все новые версии процессоров еще пару лет (как раз до перехода на 45нм техпроцесс). Однако общие тенденции компьютерной отрасли требуют параллельных вычислений. Соответственно, главная стратегическая задача Intel выражается в разработке многоядерных процессоров.

На сегодняшний день отношение к двух (и более) ядерным процессорам неоднозначное. С одной стороны, количество оптимизированного программного обеспечения крайне мало, и подобные программы можно найти только среди профессионального ПО. Т.е. для домашнего пользователя, многоядерные процессоры как бы и не нужны. Но с другой стороны, двухъядерный процессор обеспечивает более комфортную работу с Windows XP (и другими OC). Правда "комфортность" величина субъективная, и каким-либо числом ее выразить нельзя. Но по своему личному опыту, эта самая "комфортность" вполне осязаема, и позволяет рекомендовать именно двухъядерные процессоры.

Даже двухъядерный Celeron позволяет почувствовать разницу в удобстве работы! Под Celeron'ом я подразумеваю дешевые процессоры Smithfield (например, все тот же двухъядерный процессор Pentium 805). А то, что он называется Pentium не должно смущать покупателя: производительность процессоров Conroe столь велика, что разом отправляет все остальные LGA775 процессоры в разряд low- и middle-end продуктов.

Итак, в ближайшем будущем можно ожидать увеличение количества ядер на одном процессоре. Думаю, это произойдет не ранее 2008 года, когда Intel перейдет на новый (45нм) техпроцесс и продемонстрирует новую процессорную архитектуру. В это время можно будет ожидать появление первых 8-ядерных процессоров. Тем самым рост производительности происходит по двум направлениям: увеличение производительности архитектуры (т.е. одного ядра) и увеличение количества ядер на одном процессоре.

Думаю, это время станет эпохой расцвета многоядерных процессоров. Наличие оптимизации под многопоточность станет необходимым требованием при разработке ПО (вероятно, подобная оптимизация будет встроена на уровне средств разработки), а одноядерные процессоры просто исчезнут с прилавков магазинов. Кроме того, в 2007 году выходит новая операционная система MS Vista, и соответственно, все последние разработки программного обеспечения ведутся именно под эту систему. И вполне возможно, первые плоды преимущества многоядерных систем мы получим уже через несколько недель.

Как я уже говорил, на сегодняшний день количество оптимизированного ПО довольно мало, и чаще всего встречается среди программ для обработки 3-мерной графики, кодирование потоковой информации (видео и звук), сжатия информации (архиваторы) и работа с графической информацией (обработка изображений). Именно с этих приложений мы начнем тестирование процессора Core 2 Extreme QX6700. Однако, прежде рассмотрим потенциал нового процессора в области разгона.

Разгон и тепловыделение

Поскольку Kentsfield представляет собой два ядра Conroe, то понятно, что потенциал по росту тактовой частоты не будет превышать пределы ядра Conroe. Однако размещение на одном процессоре двух ядер приводит к тому, что максимально возможная тактовая частота ограничена потенциалом самого "худшего" ядра. Но с другой стороны, для производства Kentsfield компания Intel отбирает только самые "лучшие" зерна, т.е. ядра, что говорит в пользу разгона. В общем, можно ожидать, что технологический предел находится в районе 3,5 ГГц.

Так оно и оказалось: максимально стабильная тактовая частота нашего экземпляра процессора оказалась равна 3,45-3,5 ГГц с воздушным охлаждением (кулер Gigabyte G-Power). При этом стоит отметить, что данный процессор с успехом стартовал на частоте 3,66 ГГц, но стабильная работа была невозможной по причине очень высокого тепловыделения.

Производительность

Мы протестировали процессор как на штатной частоте 2,66 ГГц, так и на частоте 3,45 ГГц. Также мы использовали следующие комплектующие:ПроцессорПроцессор Intel Core 2 Extreme QX6700 Socket LGA775 2,66 ГГц (ядро Kentsfield степпинг B3) Процессор Intel Core 2 Duo E6700 Socket LGA775 2,66 ГГц (ядро Conroe степпинг B1) Процессор AMD Athlon64 3500+ Socket939 2,2 ГГц (ядро NewCastle степпинг CG) Процессор AMD Athlon X2 4800+ Socket939 2,4 ГГц (ядро Toledo степпинг E6) Процессор Intel Pentium4 660 Socket LGA775 3,6 ГГц (ядро Prescott-2M степпинг N0) Процессор Intel Pentium EE 955 Socket LGA775 3,46 ГГц (ядро Presler )Материнская платаAsus A8N-SLI Deluxe на чипсете nForce4 SLI ASUS P5W64-WS Pro на Intel 975XКулерGigabyte G-PowerВидеокартаMSI NX7900GT (GeForce 7900GT; PCI Express x16)Звуковая карта-HDDIBM DTLA 307030 30 ГбПамять2x256 Мб PC3200 400512ELDCPER2-K Platinum rev2.0, производства OCZ 2x512 Мб Corsair DDR2 TWIN2X1024-8000UL1КорпусInwin506 с блоком питания PowerMan 550 ВOSWindows XP SP1

Вначале посмотрим на результаты синтетических тестов.Тесты 3DMark 06 и PCMark 05 являются исключительно синтетическими приложениями, которые демонстрируют теоретическую производительность в многопоточных приложениях. Соответственно все ядра загружаются по максимуму (кстати, отметим, что часть тестов PCMark используют только 2 ядра).

Следующие тест называется Cinebench, и уже приближен к реальности:Как мы видим, полная загрузка всех четырех ядер дает 3-кратный прирост производительности, по сравнению с одним ядром. А если сравнить скорости Kentsfield с одноядерными процессорами предыдущего поколения, то налицо 5-кратная разница!

Теперь посмотрим на программные пакеты для обработки графики. Это 3DMax, POV-ray и Photoshop CS.Итак, 4-ядерный Core 2 Extreme QX6700 быстрее двухъядерного Conroe в полтора раза (т.е. все тот же 3-кратный прирост по сравнению с одноядерным процессором). А прочую одноядерную мелюзгу, QX6700 обгоняет почти в 4 раза!POV-ray демонстрирует 100% загрузку всех ядер, что обеспечивает 4-кратный рост скорости (т.е. близко к результатам синтетики).А вот Photoshop не выявил какого-либо преимущества нового процессора. Дело в том, что оптимизация подразумевает загрузку двух ядер. Соответственно скорости ядер Kentsfield и Conroe равны.

Далее у нас тесты по обработке потоковой информации. Это VirtualDub+DivX 6.4 для обработки видео, Microsoft Media Encoder (обработка звука).Обе эти программы не выявили преимущества 4-ядерника над двухъядерным процессором. Однако есть свои особенности: DivX загружает все ядра, но неравномерно (т.е. налицо ограничение других компонентов системы). А MS Encoder умеет работать только с двумя ядрами.

Следующий тест - сжатие с помощью архиватора WinRAR, который имеет многопоточную оптимизацию.Превосходство 4-ядерной архитектуры есть, но незначительное.

И наконец единственная многопоточная игра - Quake 4:Данная игра ориентирована на одноядерную конфигурацию, и при наличии дополнительных процессорных ядер загружает их неравномерно и эпизодически. Т.е. разницы между Kentsfield и Conroe нет.

Предварительные выводы

Итак, если классифицировать все программное обеспечение по многопоточной оптимизации, то вырисовывается следующая картина. -ПО с 4-ядерной оптимизацией. Такие программы практически полностью загружают процессор Kentsfield, и прирост производительности достигает 300%! -ПО с 2-ядерной оптимизацией. Концептуально неправильное решение: если уж делать подобную оптимизацию, то нельзя привязываться к количеству ядер. Впрочем, такая оптимизация все же лучше, чем ее отсутствие. И единственное достоинство Kentsfield в подобной ситуации, заключается в возможности запустить 2 подобные программы, которые будут обрабатывать различную информацию, и тем самым загружать все четыре ядра. -ПО без оптимизации. Без комментариев. Преимущества различных Kentsfield и Conroe над одноядерным процессором нет.

По последнему пункту стоит отметить, что подавляющее большинство программ для домашних пользователей не имеют многопоточной оптимизации. Иными словами, все игры не позволяют реализовать преимущества многоядерных процессоров. Впрочем, первые положительные сдвиги уже есть. В частности игра Ghost Recon: Advance Warfighter имеет подобную оптимизацию, и способна загрузить два ядра.Кроме того, разработчики 3D стратегии Paraworld обещали реализовать подобную оптимизацию, но в демо-версии мы ее не обнаружили. Впрочем, на экране было не больше десятка юнитов, и потребности во втором ядре просто не было. Возможно увеличение количества обрабатываемых объектов до нескольких тысяч приведет к загрузке дополнительных ядер.

Также к выходу готовятся следующие игры с многопоточной оптимизацией: Supreme Commander (THQ / Gas Powered Games; выход в первом квартале 2007 года), Splinter Cell : Double Agent (Ubisoft, конец 2006 года, до 6 исполняемых потоков). Но по большому счету, это капля в море.

Впрочем, к играм мы еще вернемся, а пока рассмотрим привлекательность новых процессоров с профессиональной точки зрения. Итак, если используемое ПО имеет многопоточную оптимизацию, то процессоры Kentsfield, без всякого сомнения, являются наилучшим решением. Они обеспечивают прирост производительности до 2-3 раз (в зависимости от степени оптимизации), и не имеют никаких существенных недостатков. Даже цена в районе 1000 $ не является недостатком при сборке рабочих станций. В зависимости от зарплаты пользователя, подобный процессор окупится в течение двух-трех месяцев (с точки зрения работодателя).

Но в очередной раз повторюсь, что количество оптимизированного ПО очень мало. Даже маркетологи Intel при анонсе этого процессора рекомендуют крайне скудный список тестового ПО, который включает Adobe Premier Pro, Adobe After Effects, Adobe Photoshop, Pinacle Studio и некоторые программы для работы с видео и аудио.

Теперь посмотрим на производительность процессора Kentsfield в играх и приложениях без оптимизации. Тут можно даже не смотреть на графики, поскольку понятно, что скорость работы будет практически полностью соответствовать скорости ConroeAllendale, а небольшая разница вполне объясняется разными материнскими платами с разными версиями BIOS.

ПроцессорПроцессор Intel Core 2 Extreme QX6700 Socket LGA775 2,66 ГГц (ядро Kentsfield степпинг B3) Процессор Intel Core 2 Duo E6700 Socket LGA775 2,66 ГГц (ядро Conroe степпинг B1) Процессор AMD Athlon64 3500+ Socket939 2,2 ГГц (ядро NewCastle степпинг CG) Процессор AMD Athlon X2 4800+ Socket939 2,4 ГГц (ядро Toledo степпинг E6) Процессор Intel Pentium4 660 Socket LGA775 3,6 ГГц (ядро Prescott-2M степпинг N0) Процессор Intel Pentium D 820 Socket LGA775 2,8 ГГц (ядро Smithfield степпинг A0) Процессор Intel Pentium EE 955 Socket LGA775 3,46 ГГц (ядро Presler )Материнская платаAsus A8N-SLI Deluxe на чипсете nForce4 SLI Asus P5WD2 Premium на чипсете Intel 955X ASUS P5W-DH Deluxe на Intel 975XКулерGigabyte G-PowerВидеокартаASUS EN6600 GT (GeForce 6600GT; PCI Express x16)Звуковая карта-HDDIBM DTLA 307030 30 ГбПамять2x256 Мб PC3200 400512ELDCPER2-K Platinum rev2.0, производства OCZ 2x512 Мб Corsair DDR2 TWIN2X1024-8000UL1КорпусInwin506 с блоком питания PowerMan 300 В/PowerMan 550 ВOSWindows XP SP1

Итак, в тестах использовался уже привычный набор приложений. Вначале посмотрим на результаты синтетических тестов.Перед нами исключительно синтетические приложения, которые демонстрируют теоретическую производительность.

Теперь тесты игровых приложений.В список результатов мы включили показатели разогнанных процессоров, чтобы оценить масштабирование производительности с ростом тактовой частоты. Кроме того, наши читатели должны ориентироваться, на что можно рассчитывать, покупая тот или иной процессор.

Выводы

Итак, выводы довольно просты. Во-первых, четырехъядерные процессоры Kentsfield ориентированы исключительно на профессионалов, которые используют оптимизированное ПО. Впрочем, и обычные пользователи подобного ПО могут приобрести этот процессор, если их не смущает цена (около 1000 $). За эти деньги пользователь получает систему, которая в ~1,5 быстрее системы с процессором Conroe, и в 3-4 раза быстрее одноядерных процессоров.

Для остальных пользователей Kentsfield пока не является необходимостью. Даже при эпизодическом использовании оптимизированного ПО, использование двухъядерных процессоров Conroe полностью удовлетворит все запросы и потребности.

Что касается разгона, то в этом отношении технологический предел Kentsfield точно такой же, как и у Conroe. А вот тепловыделение нового процессора гораздо выше, и достигает 130 Вт. Впрочем, благодаря Prescott, эта величина не пугает пользователей, а в магазинах есть соответствующие системы охлаждения и мощные блоки питания.

makc-news.3dn.ru