КАТАЛОГ ТОВАРОВ

Срок доставки товара в течении 1-3 дней !!!

 

ПОЛЬЗОВАТЕЛЬ
КОРЗИНА

programmig [1 term] / принципы работы компьютера / устройство компьютера[1-10] / устройства ввода вывода. Устройства ввода данных


устройства ввода вывода

 

1.6. Устройства ввода-вывода информации

Человек взаимодействует с информационными системами главным образом через устройства ввода-вывода (input-output devices). Прогресс в области информационных технологий достигается не только благодаря возрастающей скорости процессоров и емкости запоминающих устройств, но также за счет совершенствования устройств ввода и вывода данных. Устройства ввода-вывода называются также периферийными устройствами (peripheral devices).

УСТРОЙСТВА ВВОДА ДАННЫХ

Клавиатура 

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащены как персональные компьютеры, так и терминалы мэйнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

алфавитно-цифровой блок – содержит клавиши латинского и национального алфавитов, а также клавиши цифр и специальных символов;

блок управляющих клавиш;

блок расширенной цифровой клавиатуры;

блок навигации.

Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий.

Компьютерная мышь

Мышь (mouse) была разработана довольно давно (в 60-х годах), но стала широко использоваться только с приходом в мир персональных компьютеров графического пользовательского интерфейса. Обычно мышь, как и клавиатура, подключается к компьютеру с помощью кабеля. Пользоваться мышью легко – вы передвигаете ее по столу, а на экране компьютера синхронно перемещается курсор. Чтобы активизировать некоторую опцию, нужно щелкнуть левой (left) клавишей мыши. С помощью мыши можно также "рисовать" на экране картинки.

Датчики перемещения

В процессе «эволюции» компьютерной мыши наибольшие изменения претерпели датчики перемещения.

Прямой привод

Первая компьютерная мышь

Изначальная конструкция датчика перемещения мыши, изобретённой Дугласом Энгельбартом в Стенфордском исследовательском институте в 1963 году, состояла из двух перпендикулярных колес, выступающих из корпуса устройства. При перемещении мыши колеса крутились каждое в своем измерении.

Такая конструкция имела много недостатков и довольно скоро была заменена на мышь с шаровым приводом.

Шаровой привод

В шаровом приводе движение мыши передается на выступающий из корпуса обрезиненный стальной шарик (его вес и резиновое покрытие обеспечивают хорошее сцепление с рабочей поверхностью). Два прижатых к шарику ролика снимают его движения по каждому из измерений и передают их на датчики угла поворота (инкрементальные энкодеры), преобразующие эти движения в электрические сигналы.

Основной недостаток шарового привода — загрязнение шарика и снимающих роликов, приводящее к заеданию мыши и необходимости в периодической её чистке (отчасти эта проблема сглаживалась путём металлизации роликов). Несмотря на недостатки, шаровой привод долгое время доминировал, успешно конкурируя с альтернативными схемами датчиков. В настоящее время шаровые мыши почти полностью вытеснены оптическими мышами второго поколения.

Существовало два варианта датчиков для шарового привода.

Оптический энкодер

Оптопарный координатный датчик в мыши с шаровым приводом

Устройство механической компьютерной мыши

Оптический датчик состоит из двойной оптопары — светодиода и двух фотодиодов (обычно — инфракрасных) и диска с отверстиями или лучевидными прорезями, перекрывающего световой поток по мере вращения. При перемещении мыши диск вращается, и с фотодиодов снимается сигнал с частотой, соответствующей скорости перемещения мыши. Разница фаз засветки между двумя фотодиодами определяет направление вращения. Аналогичный сенсор стоит на колесике прокрутки.

Оптические мыши первого поколения

Оптические датчики призваны непосредственно отслеживать перемещение рабочей поверхности относительно мыши. Исключение механической составляющей обеспечивало более высокую надёжность и позволяло увеличить разрешающую способность детектора.

Первое поколение оптических датчиков было представлено различными схемами оптопарных датчиков с непрямой оптической связью — светоизлучающих и воспринимающих отражение от рабочей поверхности светочувствительных диодов. Такие датчики имели одно общее свойство — они требовали наличия на рабочей поверхности (мышином коврике) специальной штриховки (перпендикулярными или ромбовидными линиями). На некоторых ковриках эти штриховки выполнялись красками, невидимыми при обычном свете (такие коврики даже могли иметь рисунок).

Недостатками таких датчиков обычно называют:

  • необходимость использования специального коврика и невозможность его замены другим. Кроме всего прочего, коврики разных оптических мышей часто не были взаимозаменяемыми и не выпускались отдельно;

  • необходимость определённой ориентации мыши относительно коврика, в противном случае мышь работала неправильно;

  • чувствительность мыши к загрязнению коврика (ведь он соприкасается с рукой пользователя) — датчик неуверенно воспринимал штриховку на загрязнённых местах коврика;

  • высокую стоимость устройства.

В СССР оптические мыши первого поколения, как правило, встречались только в зарубежных специализированных вычислительных комплексах.

Оптические мыши с матричным сенсором

Мышь с оптическим датчиком

Микросхема оптического датчика второго поколения

Второе поколение оптических мышей имеет более сложное устройство. В нижней части мыши установлена специальная быстрая видеокамера. Она непрерывно делает снимки поверхности стола и, сравнивая их, определяет направление и величину смещения мышки. Специальная контрастная подсветка поверхности светодиодом или лазером облегчает работу камеры. Оптические мыши второго поколения имеют огромное преимущество перед первым: они не требуют специального коврика и работают практически на любых поверхностях, кроме зеркальных или прозрачных; даже нафторопласте (включая черный).

Практически единственным производителем сенсоров оптических мышек является компания Avago Technologies. Её сенсоры имеют разрешение от 16*16 до 40*40 пикселей при нескольких тысячах кадров в секунду. Специализированный цифровой сигнальный процессор для расчёта перемещений интегрирован на кристалл вместе с сенсором.

Предполагалось, что такие мыши будут работать на произвольной поверхности, однако вскоре выяснилось, что многие продаваемые модели (в особенности первые широко продаваемые устройства) не так уж и безразличны к фактуре поверхности или рисункам на коврике. На некоторых участках рисунка графический процессор способен сильно ошибаться, что приводит к хаотичным движениям указателя, не отвечающих реальному перемещению. Для склонных к таким сбоям мышей необходимо подобратьковрик с иным рисунком. Особенности контрастной подсветки приводят к ошибкам мышки на гладких поверхностях типа зеркал.

Пыль и ворс на оптике сенсора также приводит к ошибкам движения или эффекту мелких движений в состоянии покоя, что проявляется дрожанием указателя на экране, иногда с тенденцией сползания в ту или иную сторону.

Мышь с двойным датчиком

Датчики второго поколения постепенно совершенствуются, и в настоящее время мыши, склонные к сбоям, встречаются гораздо реже. Кроме совершенствования датчиков, некоторые модели оборудуются двумя датчиками перемещения сразу, что позволяет, анализируя изменения сразу на двух участках поверхности, исключать возможные ошибки. Такие мыши иногда способны работать на стеклянных, оргстеклянных и зеркальных поверхностях (на которых не работают другие мыши).

Также выпускаются коврики для мышей, специально ориентированные на оптические мыши. Например, коврик, имеющий на поверхности силиконовую плёнку с взвесью блёсток (предполагается, что оптический сенсор гораздо чётче определяет перемещения по такой поверхности).

Также, к недостаткам оптических мышей некоторые люди относят свечение таких мышей даже при выключенном компьютере. Поскольку большинство недорогих оптических мышей имеют полупрозрачный корпус, он пропускает красный свет светодиодов, который мешает уснуть в случае, если компьютер находится в спальне. Это происходит, если напряжение на порты PS/2 и USB подаётся от линии дежурного напряжения; большинство материнских плат позволяют изменить это перемычкой +5V <-> +5VSB, но в этом случае не будет возможности включать компьютер с клавиатуры. Для устранения этой проблемы можно также купить мышку с инфракрасным светодиодом подсветки.

Гироскопические мыши

Мышь, оснащённая гироскопом, распознаёт движение не только на поверхности, но и в пространстве: её можно взять со стола и управлять движением кисти в воздухе. Гироскопические датчики совершенствуются. Например, по заявлению Logitech, механические датчики, выполненные по технологии MEMS, используемые в мыши MX Air, миниатюрнее традиционных гироскопических. На сегодняшний день самым миниатюрным гироскопическим датчиком укомплектованы мыши (NEO MOUSE), разработанные Корейской компанией NEO REFLECTION. Вес «Нео мыши» составляет всего 13 граммов, а по размеру она не больше пальчиковой батарейки.

Сенсорные экраны 

Сенсорные экраны (touch screens) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. К примеру, в магазинах Muse Inc. (Бруклин), продающей компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного ввода информации 

Устройства этого типа считывают информацию с носителя, где она уже имеется. Примерами таких систем могут служить кассовые терминалы, сканеры штрих-кодов и другие системы оптического распознавания символов. Одно из преимуществ устройств автоматизированного ввода данных состоит в том, что при их использовании исключаются некоторые ошибки, неизбежные при вводе информации с клавиатуры. Сканер штрих-кодов делает менее чем одну ошибку на 10000 операций, в то время как обученный наборщик ошибается один раз при вводе каждых 1000 строк. Основные вида устройств автоматизированного ввода информации – системы распознавания магнитных знаков, системы оптического распознавания символов, системы ввода информации на базе светового пера, сканеры, системы распознавания речи, сенсорные датчики и устройства видеозахвата. Системы распознавания магнитных знаков (Magnetic Inc Character Recognition, MICR) используются в основном в банковской сфере. В нижней части обычного банковского чека находится код, нанесенный специальными магнитными чернилами. В коде содержится номер банка, номер расчетного счета и номер чека. Система считывает информацию, преобразовывает ее в цифровую форму и передает в банк для обработки. Системы оптического распознавания символов (Optical Character Recognition, OCR) преобразуют специальным образом нанесенную на носитель информацию в цифровую форму. Наиболее широко используемые устройства этого типа – сканеры штрих-кодов (bar-code scanners), которые применяются в кассовых терминалах магазинов. Эти системы используются также в больницах, библиотеках, на военных объектах, складах продукции и в компаниях по перевозке грузов. В дополнение к данным, идентифицирующим предмет, на который нанесен штрих-код, последний может содержать информацию о времени, дате и физическом положении предмета; таким образом, можно, например, отслеживать передвижение груза. Ручные устройства распознавания информации, такие как перьевые планшеты, особенно полезны для людей, работающих в сферах сбыта продукции и сервиса – такие работники избегают "общения" с клавиатурой. Устройства перьевого ввода обычно содержат плоский экран и световое перо, похожее на шариковую ручку. Перьевые планшеты преобразуют буквы и цифры, написанные пользователем на экране, в цифровую форму, и передают эти данные в компьютер для обработки. Например, United Parcel Service (UPS), известнейшая в мире компания по доставке грузов, заменила обычные планшеты с листками бумаги, использовавшиеся водителями, на портативные перьевые планшеты. Эти устройства используются для подтверждения заказов, и передачи другой информации, необходимой для погрузки и доставки грузов. К недостаткам систем данного вида следует отнести недостаточную точность распознавания информации, написанной от руки. Сканеры (scanners) преобразуют в цифровую форму графическую информацию (рисунки, чертежи и пр.) и большие объемы текстовой информации. 

Сканер – устройство ввода графических изображений в компьютер. В сканер закладывается лист бумаги с изображением. Устройство считывает его и пересылает компьютеру в цифровом виде. Во время сканирования вдоль листа с изображением плавно перемещается мощная лампа и линейка с множеством расположенных на ней в ряд светочувствительных элементов. Обычно в качестве светочувствительных элементов используют фотодиоды. Каждый светочувствительный элемент вырабатывает сигнал, пропорциональный яркости отраженного света от участка бумаги, расположенного напротив него. Яркость отраженного луча меняется из-за того, что светлые места сканируемого изображения отражают гораздо лучше, чем темные, покрытые краской. В цветных сканерах расположено три группы светочувствительных элементов, обрабатывающих соответственно красные, зеленые и синие цвета. Таким образом, каждая точка изображения кодируется как сочетание сигналов, вырабатываемых светочувствительными элементами красной, зеленой и синей групп. Закодированный таким образом сигнал передается на контроллер сканера в системный блок.

Различают сканеры ручные, протягивающие и планшетные. В ручных сканерах пользователь сам ведет сканер по поверхности изображения или текста. Протягивающие сканеры предназначены для сканирования изображений на листах только определенного формата. Протягивающее устройство таких сканеров последовательно перемещает все участки сканируемого листа над неподвижной светочувствительной матрицей. Наибольшее распространение получили планшетные сканеры, которые позволяют сканировать листы бусмги, книги и другие объекты, содержащие изображения. Такие сканеры состоят из пластикового корпуса, закрываемого крышкой. Верхняя поверхность корпуса выполняется из оптически прозрачного материала, на который кладется сканируемое изображение. После этого изображение закрывается крышкой и производится сканирование. В процессе сканирования под стеклом перемещается лампа со светочувствительной матрицей.

Системы распознавания речи (voice inputdevices) преобразуют в цифровую форму произносимые пользователем слова. Существует два режима работы подобных устройств. В режиме управления (command mode) вы произносите команды (такие как "открыть документ", "запустить программу" и т.д.), которые выполняются компьютером. В режиме диктовки (dictation mode) можно надиктовывать компьютеру любой текст. К сожалению, точность распознавания речи таких систем оставляет желать лучшего. Человеческий голос имеет множество оттенков, на точность распознавания может повлиять интонация, громкость речь, окружающий шум, даже банальный насморк. Тем не менее, работа над совершенствованием этих устройств ввода информации продолжается и, несомненно, у них большое будущее. Некоторые отделения Почтовой службы США используют системы распознавания речи для повышения эффективности труда работников, занятых упаковкой и сортировкой почтовых грузов. Вместо того чтобы вводить ZIP-код, работник произносит его, в то время как его руки заняты упаковкой. Сенсорные датчики (sensors) – это устройства для ввода в компьютер пространственной информации. Например, корпорация General Motors использует сенсоры в своих легковых автомобилях для передачи в бортовой компьютер машины данных об окружающем пространстве и маршруте. Сенсорные датчики также нашли применение в системах виртуальной реальности, игровых приставках и симуляторах. Устройства видеозахвата (video capture devices) представляют собой небольшие цифровые видеокамеры, соединенные с компьютером. Устройства видеозахвата применяются в основном в системах видеоконференций, которые получают все большее распространение. Благодаря развитию локальных сетей и Интернет, появилась возможность организовывать видеоконференцсвязь, находясь в любой точке планеты.

УСТРОЙСТВА ВЫВОДА ИНФОРМАЦИИ

Основные устройства вывода информации – мониторы и принтеры.

Мониторы

Мониторы (monitors) – наиболее популярные устройства отображения информации. Основа большинства современных мониторов – электронно-лучевая трубка, ЭЛТ (cathode ray tube, CRT). По принципу работы ЭЛТ напоминают кинескопы, используемые в обычных телевизорах – электронная пушка испускает пучок электронов, высвечивающих на экране картинку, состоящую из точек (pixels). Чем больше точек может вместить экран, тем выше разрешение (resolution) монитора. Большинство мониторов поддерживают режимы разрешения 800x600 и 1024x768 точек. Кроме разрешения, мониторы характеризуются следующими параметрами, определяющими качество изображения:

размер зерна (dot size), дюйм (inch) – физический размер одной точки экрана монитора. Чем меньше размер зерна, тем выше качество изображения. Большинство мониторов бизнес-класса имеют размер зерна, равный 0.28 дюйма;

размер ЭЛТ по диагонали (CRT size), дюйм (inch). Еще недавно стандартом был размер ЭЛТ 14 дюймов, но сейчас в сфере бизнеса применяют мониторы с размерами ЭЛТ 15, 17, 19 и 21 дюйм;

частота развертки (refresh frequency), Гц (Hz) – частота смены кадров. Чем выше частота развертки, тем меньше устают глаза пользователя. Относительно безопасной является частота развертки от 85 Гц и выше.

В мониторах с электронно-лучевой трубкой изображение формируется с помощью зерен люминофора – вещества, которое светится под воздействием электронного луча. Различают три типа люминофоров в соответствии с цветами их свечения: красный, зеленый и синий. Цвет каждой точки экрана определяется смешением свечения трех разноцветных точек (триады), отвечающих за данный пиксель. Яркость соответствующего цвета меняется в зависимости от мощности электронного пучка, попавшего в соответствующую точку. Электронный пучок формируется с помощью электронной пушки. Электронная пушка состоит из нагреваемого при прохождении электрического тока проводника с высоким удельным электрическим сопротивлением, эмитирующего электроны покрытия, фокусирующей и отклоняющей системы.

При прохождении электрического тока через нагревательный элемент электронной пушки, эмитирующее покрытие, нагреваясь, начинает испускать электроны. Под действием ускоряющего напряжения электроны разгоняются и достигают поверхности экрана, покрытой люминофором, который начинает светиться. Управление пучком электронов осуществляется отклоняющей и фокусирующей системой, которые состоят из набора катушек и пластин, воздействующих на электронный пучек с помощью магнитного и электрического полей. В соответствии с сигналами развертки, подаваемыми на электронную пушку, электронный луч побегает по каждой строчке экрана, последовательно высвечивая соответствующие точки люминофора. Дойдя до последней точки, луч возвращается к началу экрана. Таким образом, в течение определенного периода времени изображение перерисовывается. Частоту смены изображений определяет частота горизонтальной синхронизации. Это один из наиболее важных параметров монитора, определяющих степень его вредного воздействия на глаза. В настоящее время гигиенически допустимый минимум частоты горизонтальной синхронизации составляет 80 Гц, у профессиональных мониторов она составляет 150 Гц.

Современные мониторы с электронно-лучевой трубкой имеют специальное антибликовое покрытие, уменьшающее отраженный свет окон и осветительных приборов. Кроме того, монитор покрывают антистатическим покрытием и пленкой, защищающей от электромагнитного излучения. Дополнительно на монитор можно установить защитный экран, который необходимо подсоединить к заземляющему проводу, что также защитит от электромагнитного излучения и бликов. Уровни излучения мониторов нормируются в соответствии со стандартами LR, MPR и MPR-II.

Жидкокристаллические мониторы имеют меньшие размеры, потребляют меньше электроэнергии, обеспечивают более четкое статическое изображение. В них отсутствуют типичные для мониторов с электронно-лучевой трубкой искажения. Принцип отображения на жидкокристаллических мониторах основан на поляризации света. Источником излучения здесь служат лампы подсветки, расположенные по краям жидкокристаллической матрицы. Свет от источника света однородным потоком проходит через слой жидких кристаллов. В зависимости от того, в каком состоянии находится кристалл, проходящий луч света либо поляризуется, либо не поляризуется. Далее свет проходит через специальное покрытие, которое пропускает свет только определенной поляризации. Там же происходит окраска лучей в нужную цветовую палитру. Жидкокристаллические мониторы практически не производят вредного для человека излучения.

Принтеры

Принтеры (printers) выполняют печать информации на бумаге или пленке (результат, получаемый при печати, называют твердой копией [hard copy]). Принтеры бывают матричные (dot matrix), струйные (inkjet), лазерные (laser) и термографические (thermal transfer). К последним относятся сублимационные и твердочернильные. Линейно-матричные принтеры могут печатать до 20000 строк в минуту. Основные характеристики принтеров:

разрешение (print resolution) – количество точек на один квадратный дюйм. Чем выше разрешение, тем качественнее печать. Матричные принтеры обеспечивают сравнительно низкое разрешение – от 80 до 200 точек на кв. дюйм; струйные – до 720, лазерные – до 1200, термографические –  от 1200 до 5000 точек на кв. дюйм;

скорость печати (print speed), страниц в минуту (ppm). Скорость печати варьируется от 2 ppm у матричных принтеров до 4-6 ppm у струйных и 4-8 ppm у лазерных. Мощные лазерные и термографические принтеры способны выводить на печать до 100 страниц в минуту;

поддержка цветной печати (color print) – очень важное свойство для тех, кто занимается компьютерной графикой и дизайном. Также очень удобно пользоваться цветными принтерами при печати графиков и диаграмм. В качестве устройств цветной печати используются в основном струйные принтеры. Возможности цветной печати есть и у других типов принтеров. Однако, матричные цветные принтеры неудобны в управлении и не обеспечивают приемлемое качество печати. Лазерные и  термографические принтеры способны обеспечить высочайшее качество изображения, но эти печатающие устройства пока слишком дороги для применения в бизнесе.

Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.

Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.

Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество – тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.

Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.

studfiles.net

7 Устройства ввода-вывода данных

Устройства ввода-вывода

Устройство ввода-вывода - это компонент типовой архитектуры компьютера, предоставляющий компьютеру возможность взаимодействия с пользователем.

В соответствии с точным определением, в качестве «сердца» компьютера рассматривается процессор и память (оперативное запоминающее устройство, ОЗУ). Все операции, не являющиеся внутренними по отношению к этому комплексу, рассматриваются как операции ввода/вывода.

Устройства ввода

Устройства ввода — приборы для занесения данных в компьютер.

Основным, и обычно необходимым, устройством ввода текстовых символов и команд в компьютер остаётся клавиатура.

Основные устройства ввода:

Устройства ввода графической информации

  • Сканер

  • Графический планшет

  • Видео- и Веб-камера

  • Цифровой фотоаппарат

  • Плата видеозахвата

Устройства ввода звука

Устройства ввода текстовой информации

Указательные (координатные) устройства

С относительным указанием позиции (перемещения)

  • Мышь

  • Трекбол

  • Трекпоинт

  • Тачпад

  • Джойстик

  • Видеокамера

С возможностью указания абсолютной позиции

  • Графический планшет

  • Световое перо

  • Аналоговый джойстик

Игровые устройства ввода

Клавиатура — устройство, представляющее собой набор клавиш, предназначенных для управления каким-либо устройством, или для ввода информации.

Стандартная компьютерная клавиатура имеет 101 или 102 клавиши. Расположение клавиш на ней подчиняется единой общепринятой схеме, спроектированной в расчёте на английский алфавит.

По своему назначению клавиши на клавиатуре делятся на шесть групп:

  • функциональные;

  • алфавитно-цифровые;

  • управления курсором;

  • цифровая панель;

  • специализированные;

  • модификаторы.

Двенадцать функциональных клавиш расположены в самом верхнем ряду клавиатуры. Ниже располагается блок алфавитно-цифровых клавиш. Правее этого блока находятся клавиши управления курсором, а с самого правого края клавиатуры — цифровая панель.

К алфавитно-цифровому блоку относятся клавиши для ввода букв, цифр, знаков пунктуации и арифметических действий, специальных символов.

К числу клавиш-модификаторов относятся клавиши Shift, Ctrl, Caps Lock, Alt и AltGr (правый Alt). Они предназначены для изменения действий других клавиш. Включение верхнего регистра клавиш (при отключённом Caps Lock) осуществляется нажатием и удержанием клавиши Shift .

Клавиши-модификаторы используются наиболее часто, поэтому они имеют увеличенный размер. К тому же клавиши Shift и Ctrl продублированы по обеим сторонам блока алфавитно-цифровых клавиш.

Основное назначение клавиш цифровой панели — дублирование функций клавиш алфавитно-цифрового блока в части ввода цифр и арифметических операторов. Использование клавиш этой панели более удобно для ввода цифр и арифметических операторов, нежели ввод этих символов клавишами алфавитно-цифрового блока.

Манипулятор «мышь» (в обиходе просто «мышь» или «мышка») — одно из указательных устройств ввода, обеспечивающих интерфейс пользователя с компьютером.

Сканер — устройство, которое, анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

В зависимости от способа сканирования объекта и самих объектов сканирования существуют следующие виды сканеров:

Планшетные — наиболее распространённый вид сканеров, поскольку обеспечивает высокое качество и приемлемую скорость сканирования. Представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.

Ручные — в них отсутствует двигатель, следовательно, объект приходится сканировать пользователю вручную, единственным его плюсом является дешевизна и мобильность, при этом он имеет массу недостатков — низкое разрешение, малую скорость работы, узкая полоса сканирования, возможны перекосы изображения.

Листопротяжные — лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо лампы.

Планетарные сканеры — применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах).

Барабанные сканеры — применяются в полиграфии, имеют большое разрешение (около 10 тысяч точек на дюйм). Оригинал располагается на внутренней или внешней стенке прозрачного цилиндра (барабана).

Слайд-сканеры — служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.

Сканеры штрих-кода — небольшие, компактные модели для сканирования штрих-кодов товара в магазинах.

Основные характеристики сканеров

Разрешение измеряется в точках на дюйм (англ. dots per inch — dpi, 1 дюйм = 25,4 мм) и является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Сегодня считается нормой уровень разрешения не менее 600 dpi. Для обработки слайдов необходимо более высокое разрешение: не менее 1200 dpi.

Измеряется количеством оттенков, которые устройство способно распознать. 24 бита соответствует 16 777 216 оттенков. Современные сканеры выпускают с глубиной цвета 24, 30, 36, 48 бит. Несмотря на то, что графические адаптеры пока не могут работать с глубиной цвета больше 24 бит, такая избыточность позволяет сохранить больше оттенков при преобразованиях картинок в графических редакторах.

Устройства вывода

Используются для извлечения результатов работы компьютера. Устройство вывода преобразуют информацию из двоичного кода в вид, понятный человеку.

Основные устройства вывода

Устройства для вывода визуальной информации

Устройства для вывода звуковой информации

Устройства ввода/вывода

  • Перфоратор

  • Магнитный барабан

  • Стример

  • Дисковод

  • Жёсткий диск

  • Различные порты

  • Различные сетевые интерфейсы.

Монитор, дисплей — преобразуют цифровую и/или аналоговую информацию в видеоизображение.

Классификация мониторов

По виду выводимой информации

  • алфавитно-цифровые

  • дисплеи, отображающие только алфавитно-цифровую информацию

  • дисплеи, отображающие псевдографические символы

  • интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных

  • графические

  • векторные

  • растровые

По строению

  • ЭЛТ — на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

  • ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)

  • Плазменный — на основе плазменной панели

  • Проекционный — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал)

  • OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)

  • Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.

Основные параметры мониторов

  • Вид экрана — квадратный или широкоформатный (прямоугольный)

  • Размер экрана — определяется длиной диагонали

  • Разрешение — число пикселей по вертикали и горизонтали

  • Глубина цвета — число отображаемых цветов (от монохромного до 32-битного)

  • Размер зерна или пикселя

  • Частота обновления экрана

Принтер — устройство печати цифровой информации на твёрдый носитель, обычно на бумагу.

Принтеры бывают струйные, лазерные, матричные и сублимационные, а по цвету печати — чёрно-белые (монохромные) и цветные. Иногда из лазерных принтеров выделяют в отдельный вид светодиодные принтеры.

Разрешение принтера определяется в точках на дюйм — dpi — количество отдельных точек, линейно размещающихся в процессе печати на отрезке в один дюйм. Для струйных принтеров речь идёт о количестве капель чернил, для лазерных принтеров – о количестве различимых частиц тонера, спёкшихся под воздействием электрографического переноса. Лазерные и струйные принтеры не способны отобразить все варианты цвета одного пикселя одной точкой на бумаге. Вместо того, чтобы точь-в-точь передавать цвет каждого пикселя, принтер наносит на бумагу комбинацию разноцветных точек, которые с определенного расстояния воспринимаются глазом как единое целое.

studfiles.net

8 Устройства ввода/вывода данных. Их разновидности и основные характеристики. Устройства ввода-вывода информации

Человек взаимодействует с информационными системами главным образом через устройства ввода-вывода (input-output devices). Прогресс в области информационных технологий достигается не только благодаря возрастающей скорости процессоров и емкости запоминающих устройств, но также за счет совершенствования устройств ввода и вывода данных. Устройства ввода-вывода называются также периферийными устройствами (peripheral devices).

Устройства ввода данных Клавиатура

Клавиатура (keyboard) – традиционное устройство ввода данных в компьютер. Клавиатурами оснащены как персональные компьютеры, так и терминалы мэйнфреймов. Клавиатура современного компьютера содержит обычно 101 или 102 клавиши, разделенные на 4 блока:

алфавитно-цифровой блок – содержит клавиши латинского и национального алфавитов, а также клавиши цифр и специальных символов;

блок управляющих клавиш;

блок расширенной цифровой клавиатуры;

блок навигации.

Компьютерная мышь

Мышь (mouse) была разработана довольно давно (в 60-х годах), но стала широко использоваться только с приходом в мир персональных компьютеров графического пользовательского интерфейса. Обычно мышь, как и клавиатура, подключается к компьютеру с помощью кабеля. Пользоваться мышью легко – вы передвигаете ее по столу, а на экране компьютера синхронно перемещается курсор. Чтобы активизировать некоторую опцию, нужно щелкнуть левой (left)клавишей мыши. С помощью мыши можно также "рисовать" на экране картинки.

Сенсорные экраны

Сенсорные экраны (touch screens) предназначены для тех, кто не может пользоваться обычной клавиатурой. Пользователь может ввести символ или команду прикосновением пальца к определенной области экрана. Сенсорные экраны используются в основном на сладах продукции, в ресторанах, супермаркетах. К примеру, в магазинах Muse Inc. (Бруклин), продающей компакт-диски, можно прослушать желаемую композицию, прикоснувшись пальцем к ее названию на экране компьютера. Слушая выбранную мелодию, вы можете одним прикосновением вызвать список других композиций исполнителя.

Устройства автоматизированного ввода информации

Устройства этого типа считывают информацию с носителя, где она уже имеется. Примерами таких систем могут служить кассовые терминалы, сканеры штрих-кодов и другие системы оптического распознавания символов. Одно из преимуществ устройств автоматизированного ввода данных состоит в том, что при их использовании исключаются некоторые ошибки, неизбежные при вводе информации с клавиатуры. Сканер штрих-кодов делает менее чем одну ошибку на 10000 операций, в то время как обученный наборщик ошибается один раз при вводе каждых 1000 строк. Основные вида устройств автоматизированного ввода информации – системы распознавания магнитных знаков, системы оптического распознавания символов, системы ввода информации на базе светового пера, сканеры, системы распознавания речи, сенсорные датчики и устройства видеозахвата. Системы распознавания магнитных знаков (Magnetic Inc Character Recognition, MICR) используются в основном в банковской сфере. В нижней части обычного банковского чека находится код, нанесенный специальными магнитными чернилами. В коде содержится номер банка, номер расчетного счета и номер чека. Система считывает информацию, преобразовывает ее в цифровую форму и передает в банк для обработки. Системы оптического распознавания символов (Optical Character Recognition, OCR) преобразуют специальным образом нанесенную на носитель информацию в цифровую форму. Наиболее широко используемые устройства этого типа –сканеры штрих-кодов (bar-code scanners), которые применяются в кассовых терминалах магазинов. Эти системы используются также в больницах, библиотеках, на военных объектах, складах продукции и в компаниях по перевозке грузов. В дополнение к данным, идентифицирующим предмет, на который нанесен штрих-код, последний может содержать информацию о времени, дате и физическом положении предмета; таким образом, можно, например, отслеживать передвижение груза. Ручные устройства распознавания информации, такие как перьевые планшеты, особенно полезны для людей, работающих в сферах сбыта продукции и сервиса – такие работники избегают "общения" с клавиатурой. Устройства перьевого ввода обычно содержат плоский экран и световое перо, похожее на шариковую ручку. Перьевые планшеты преобразуют буквы и цифры, написанные пользователем на экране, в цифровую форму, и передают эти данные в компьютер для обработки. Например, United Parcel Service (UPS), известнейшая в мире компания по доставке грузов, заменила обычные планшеты с листками бумаги, использовавшиеся водителями, на портативные перьевые планшеты. Эти устройства используются для подтверждения заказов, и передачи другой информации, необходимой для погрузки и доставки грузов. К недостаткам систем данного вида следует отнести недостаточную точность распознавания информации, написанной от руки. Сканеры (scanners) преобразуют в цифровую форму графическую информацию (рисунки, чертежи и пр.) и большие объемы текстовой информации. Системы распознавания речи (voice input devices) преобразуют в цифровую форму произносимые пользователем слова. Существует два режима работы подобных устройств. В режиме управления (command mode) вы произносите команды (такие как "открыть документ", "запустить программу" и т.д.), которые выполняются компьютером. В режиме диктовки (dictation mode) можно надиктовывать компьютеру любой текст. К сожалению, точность распознавания речи таких систем оставляет желать лучшего. Человеческий голос имеет множество оттенков, на точность распознавания может повлиять интонация, громкость речь, окружающий шум, даже банальный насморк. Тем не менее, работа над совершенствованием этих устройств ввода информации продолжается и, несомненно, у них большое будущее. Некоторые отделения Почтовой службы США используют системы распознавания речи для повышения эффективности труда работников, занятых упаковкой и сортировкой почтовых грузов. Вместо того чтобы вводитьZIP-код, работник произносит его, в то время как его руки заняты упаковкой. Сенсорные датчики (sensors) – это устройства для ввода в компьютер пространственной информации. Например, корпорация General Motors использует сенсоры в своих легковых автомобилях для передачи в бортовой компьютер машины данных об окружающем пространстве и маршруте. Сенсорные датчики также нашли применение в системах виртуальной реальности, игровых приставках и симуляторах. Устройства видеозахвата (video capture devices) представляют собой небольшие цифровые видеокамеры, соединенные с компьютером. Устройства видеозахвата применяются в основном в системах видеоконференций, которые получают все большее распространение. Благодаря развитию локальных сетей и Интернет, появилась возможность организовывать видеоконференцсвязь, находясь в любой точке планеты.

studfiles.net

Устройства ввода данных

Чтобы компьютер выполнял полезные функции по обработке информации, ее нужно ввести в компьютер. Информацию можно ввести с накопителей на магнитных дисках, но такая информация считается вторичной. Первичную информацию (программы, тексты, числа, алфавитно-цифровую информацию и рисунки, аудиоданные) вводят через специальные устройства ввода.

Клавиатуры

Клавиатура - самое известное и распространенное устройство ввода текстовой информации. Пока ни один компьютер не обходиться без клавиатуры, но клавиатуры разных ПК могут отличаться по количеству клавиш и их расположению.

Каждая клавиша клавиатуры представляет собой крышечку для маленького переключателя (механического или мембранного). В клавиатуре имеется микропроцессор, отслеживающий состояние переключателей. Он при нажатии или отпускании каждой клавиши посылает в компьютер соответствующее сообщение (прерывание), а программы компьютера (клавиатурные драйверы) обрабатывают эти сообщения.

Дигитайзеры

Дигитайзер - это аналого-цифровой преобразователь, имеющий обычно вид планшета. Применяется он для поточечного координатного ввода графических изображений в системах автоматического проектирования, в компьютерной графике и анимации.

Дигитайзер состоит из двух основных элементов: основания и курсора, двигающегося по его поверхности. Это устройство, изначально предназначенное для оцифровки изображений. При нажатии на кнопку курсора его местоположение на поверхности планшета фиксируется, а его координаты передаются в компьютер.

Дигитайзер часто используют при работе в Автокаде и аналогичных системах при помощи накладных меню. Команды в меню расположены на разных местах на поверхности дигитайзера. При выборе курсором одной из команд специальный программный драйвер интерпретирует координаты указанного места, посылая соответствующую команду на выполнение.

Принцип действия дигитайзера основан на фиксации местоположения курсора с помощью встроенной в планшет сетки. Сетка состоит из проволочных или печатных проводников с довольно большим расстоянием между соседними проводниками (от 3 до 6 мм). Механизм регистрации позволяет получить шаг считывания информации намного меньше шага сетки (до 100 линий на мм). Шаг считывания информации называется разрешением дигитайзера. По технологии изготовления дигитайзеры делятся на два типа: электростатические (ЭС) и электромагнитные (ЭМ). В первом типе регистрируется локальное изменение электрического потенциала сетки под курсором. Во втором типе курсор излучает электромагнитные волны, а сетка служит приемником. Но в обоих случаях приемником является сетка.

Дигитайзер можно использовать просто как аналог манипулятора "мышь".

Сканеры

Сканер – устройство для считывания графической информации с бумажных оригиналов и прозрачных пленок (слайдов).

Конструкция сканера определяется принципом его работы и способом обработки оригинала. Различают: ручные, планшетные, листопротяжные, барабанные сканеры и сканеры типа «камера».

В ручных, планшетных и листопротяжных сканерах изображение сканируется построчно: строка оригинала освещается специальной лампой, обычно газоразрядной. Отраженный непрозрачным или пропущенный прозрачным оригиналом световой поток при помощи системы зеркал и объектива фокусируется на светочувствительной матрице в виде “фотоснимок”. Этот снимок передается в Аналогово-Цифровой Преобразователь (АЦП), где преобразуется в двоичные данные, понятные компьютеру. Последовательность таких “снимков”, производимых по мере движения вдоль оригинала, и создает изображение. Этот принцип используется также в факс-аппаратах.

В барабанных сканерах применяется галогенный источник света, освещающий микроскопическую область оригинала, система зеркал и светофильтров, разделяющая световой поток на три составляющие: Красный, Зеленый, Синий (RGB), и Фотоэлектронные Умножители (ФЭУ). Луч света, отражаясь через оригинал или проходя сквозь него, после разделения на составляющие, попадает на ФЭУ где происходит его оптическое усиление и преобразование в электрический сигнал. Оригинал крепится на вращающемся с большой скоростью барабане. Датчик с источником света перемещается по мере сканирования вдоль оси вращения, находясь на очень маленьком расстоянии от оригинала. Обработка точечной области оригинала позволяет достичь значительного разрешения и обрабатывать даже очень плотные (темные) оригиналы.

Кодирующие планшеты

Кодирующие планшеты (Art Pad) применяют для ввода графической информации. Основным рабочим элементом является электрическое "перо". Перо не имеет механической связи с поверхностью планшета. С помощью пера можно рисовать на планшете и писать текст, который впоследствии может быть распознан. 

У графического планшета по сравнению с "мышью" есть ряд преимуществ. Первое - перо планшета предоставляет хорошие возможности контроля за получаемым изображением. Следующее преимущество заключается в высокой разрешающей способности планшетов (свыше 2500 dpi  против 200-400 dpi у мыши).

Немаловажна также и чувствительность графических планшетов к нажатию (до 256 уровней).  Среди достоинств планшета - так называемая "абсолютная адресация", благодаря которому он работает наподобие обычной указки: куда бы вы ни ткнули пером на поверхности планшета, курсор тут же окажется в соответствующей точке на экране. Чтобы переместить курсор посредством мыши, вам нужно катать её по коврику. Это медленнее и просто утомляет. Абсолютная адресация гораздо удобнее, ведь поверхность планшета соответствует монитору.

Оптический считыватель маркеров

Оптический считыватель маркеров (OСM) -OpticalMarkReaderэто устройство для чтения "отмеченных полей" информации из напечатанных форм в компьютер без использования клавиатуры. Заполненные формы просматриваются Оптическим считывателем маркеров, который обнаруживает присутствие метки по отраженному свету.OСMчитает, затем интерпретирует шаблон меток в запись данных и посылает ее в компьютер. Обычно Оптические считыватели маркеров бывают - с ручной подачей форм, полуавтоматической подачей и полностью автоматической подачей.

Считыватели штрихового кода

Установка и использование считывателя штрихового кода также просты, как и подключение клавиатуры. Считыватель штрихового кода присоединяются между компьютером и клавиатурой. Нет необходимости в специальном программном обеспечении и драйверах для использования считывателей штрихового кода. Клавиатура и считыватель активны одновременно. Они совместимы со всеми версиями Windows, DOS и программами Macintosh.

Цифровые фотоаппараты (камеры)

Они позволяют быстро получить готовый снимок. Различают две основных модификации цифровых камер. Первая из них обладает низкой ценой и соответственным качеством. В них в качестве светочувствительного элемента применена матрица видеокамеры. Изображение обновляется на экранчике со скоростью пару кадров в секунду. Видоискателя, как такового нет. Качество снимка, естественно (если матрица от видеокамеры), такое же как и на стоп- кадре в видеомагнитофоне или камере. Полученное изображение обладает низкой разрешающей способностью (320х200 и 640х480) и смотреть его лучше на экране монитора. Печать с удовлетворительным качеством возможна только на специальном принтере.

Следующая группа это камеры, в которых действительно происходит цифровая обработка изображений. Кадры, как правило, можно сделать в 2 режимах: "нормальное" и повышенное качество. Соответственно кадров с повышенным качеством (с большим разрешением) можно сохранить меньше, чем с обыкновенным качеством (разрешение 640х480, 1024х768). При этом для хранения данных используются алгоритмы эффективного сжатия графической информации, такие как JPEG.

Видеокамера

Устройство для ввода видеоинформации. Обычно она укрепляется на мониторе. Камеры широко используются при работе в сети (интернете). С помощью камер могут быть организованы видеоконференции. Камеры могут применяться для контроля доступа в помещении.

Устройства ввода мультимедиа информации (звук и видео)

Микрофон

Подключается к входу звуковой карты. Он позволяет осуществлять ввод аудиоданных в компьютер. Тенденции развития современных технологий ведет к тому, что управление и ввод информации будут производиться с помощью голоса. Потребуется и специальное программное обеспечение, которое позволит преобразовывать речевые предписания в машинные команды. Возможно как управление работой компьютера с помощью голосовых команд, так и ввод текстовой информации.

Звуковая плата позволяет подключить к компьютеру магнитофон или выход другого аудио-воспроизводящего устройства, а некоторые из них позволяют принимать и прослушивать передачи радио в диапазоне УКВ.

При наличии TV-кодера компьютер можно превратить в телевизор - подключив к нему телевизионную антенну или видеомагнитофон.

MIDI-устройства.

МIDI-устройства позволяют вводить музыкальную (мелодичную и тембровую) информацию с электронного музыкального инструмента. MIDI-устройства подключаются (как и джойстики) к MIDI-порту на звуковой плате. К MIDI-устройства могут быть: специальнаяMIDI-клавиатура, электрогитара, MIDI-синтезатор и др. музыкальные устройства.

studfiles.net

Глава 7 устройства ввода данных

Устройства ввода данных

Клавиатура

Мышь

Сканер

Дигитайзер

Устройства ввода Предназначены для ввода информации в компьютер. К устройствам ввода относятся клавиатура, мышь, а так же другие диалоговые устройства.

Клавиатура

Клавиатура (Keyboard) предназначена для ввода в компьютер информации от пользователя.

Клавиатура, несмотря на сильную конкуренцию со стороны мыши, является основным устройством ввода. Ее главенствующее положение навряд ли изменится до тех пор, пока не буде создана надежная и недорогая система распознавания человеческой речи.

Клавиатура с пластмассовыми штырями Для изготовления таких клавиатур используется пластмасса и резина. Нажатие клавиши на такой клавиатуре часто вызывает ощущение исключительной мягкости. Если не смотреть на экран, то неизвестно, нажата клавиша или нет. Другой недостаток этих клавиатур - вибрация, которая вызывает эффект многократного размыкания контакта клавиши, если она нажимается неправильно. Таким образом, легко может получиться так, что при нажатии клавиши соответствующий символ отображается на экране несколько раз. Для устройства, на котором печатают "вслепую" или с высокой скоростью, это крайне нежелательный побочный эффект.

Клавиатура со щелчком Описанные выше явления отсутствуют в клавиатуре со щелчком. При нажатии клавиши на такой клавиатуре механическое сопротивление клавиши тем больше, чем глубже она нажимается. Для преодоления этого сопротивления нужно затратить определенную силу, после чего клавиша идет очень легко. Таким образом обеспечивается однозначный контакт.

Нажатие и отпускание клавиши сопровождается щелчком, отсюда и название. Клавиатуры со щелчком предпочтительнее клавиатур без щелчка, потому что в этом случае можно быть уверенным в обеспечении относительно "чистого" нажатия на клавишу.

Для подключения клавиатуры используется кабель длиной около 1м., имеющий 5-ти конткактный DIN-разъем или 6-ти контактный Mini-DIN (PS/2).

Клавиатура является одним из важнейших устройств, определяющим условия комфортабельной работы на РС. Главным элементом в клавиатуре являются клавиши. При покупке клавиатуры следует тщательно опробовать их работу, чтобы определить, удовлетворяет ли "механика" клавиатуры вашим индивидуальным требованиям. Практически неважно, какие материалы используются для корпуса клавиатуры и клавиш. Это может быть как пластмасса, так и металл. Цвет и другие аспекты с функциональной точки зрения не так важны, как используемая механика клавиатуры.

Мышь

Наряду с клавиатурой мышь является важнейшим средством ввода информации в компьютер. Мышь представляет собой небольшую коробочку с несколькими кнопками, легко умещающуюся в ладони. Обычно выпускаются мыши с двумя-тремя кнопками, но специальные модели имеют больше трех кнопок (например Internet mouse). Вместе с проводом для подключения к компьютеру это устройство действительно напоминает мышь с хвостом. Некоторые прикладные программы рассчитаны только на работу с мышью, но допускают замену мыши командами вводимыми с клавиатуры.

Для оптимального функционирования мышь должна передвигаться по плоской поверхности - обычно применяются специальные коврики (Mouse pad).

Оптико-механическая мышь Несмотря на название, это самая обычная мышь. Движения, содержащегося внутри, металлического шарика покрытого резиной, регистрируются двумя пластмассовыми валиками, расположенными под прямым углом друг к другу (ось X и Y). Эти валики на конце имеют диск с растровыми отверстиями (подобие колеса со спицами). При перемещении мыши по коврику шарик приводит в движение соприкасающиеся с ним валики с дисками. Каждый диск расположен между источником света и фоточувствительным элементом, которые по порядку освещения фоточувствительных элементов и определяют направление и скорость движения мыши.

Оптическая мышь Оптическая мышь работает по принципам, схожим с работой оптико-механической мыши, только перемещение мыши регистрируется не механическими валиками. Оптическая мышь посылает луч на специальный коврик. Этот луч после отражения от коврика поступает в мышь и анализируется электроникой, которая в зависимости от типа полученного сигнала определяет направление движения мыши, основываясь либо на углах падения света, либо на специальной подсветке. Преимущество такой мыши - достоверность и надежность. Уменьшение количества механических узлов приводит к увеличению ее срока службы.

Инфракрасные мыши

Крестными отцами инфракрасной мыши стали телевизоры, видеомагнитофоны и т. п. с дистанционным управлением. Рядом или на компьютере установленприемник инфракрасного излучения, который кабелем соединяется с РС. Движение мыши регистрируется при помощи уже известной механики и преобразуется в инфракрасный сигнал, который затем передается на приемник. Преимущество свободного передвижения несколько снижается имеющимся при этом недостатком. Для безупречной передачи инфракрасного сигнала всегда должен быть установлен "зрительный" контакт между приемником и передатчиком. Нельзя загораживать излучатель такой мыши книгами, теплопоглощающими или другими материалами, так как при малой мощности сигнала мышь будет не в состоянии передать сигнал на РС. Инфракрасные мыши оборудуются аккумулятором или обычной батарейкой.

Радиомышь Более интересной альтернативой является передача информации от мыши посредством радиосигнала. При этом необходимость в зрительном контакте между приемником и передатчиком отпадает. Работа таких мышей может быть нарушена внешними помехами.

Трекбол

По принципу действия трекбол (Track ball) лучше всего сравнить с мышкой, которая лежит на столе “брюшком” вверх.

Существует два основных способа подключения мышей (проводных): через последовательный порт - 9-ти контактный Sub-D-разъем и через 6-ти контактный разъем PS/2.

Сканер

Сканером называется устройство, позволяющее вводить в компьютер в графическом виде текст, рисунки, слайды, фотографии и др.

Сканеры бывают настольные - они обрабатывают весь лист целиком, причем лист кладется внутрь сканера, либо вставляется в специальный механизм подачи, “проходит” через сканер и выходит с другой стороны. И ручные - их надо проводить над нужным рисунком или текстом. В зависимости от типа – могут выдавать черно-белые или цветные изображения. Сканеры отличаются друг от друга разрешающей способностью, количеством воспринимаемых цветов или оттенков серого цвета. При систематическом использовании необходим настольный сканер, хотя он и дороже.

Технология считывания данных в устройствах оцифровывания изображений реализуется на основе использования светочувствительных датчиков. Эти датчики преобразовывают интенсивность падающего на них отраженного света в пропорциональный ей электрический заряд. Также используется принцип усиления, отраженного от оригинала, ксенонового или вольфрамо-галогенного света. Этот свет, попадая на катод, выбивает из него электроны, которые вызывают вторичную электронную эмиссию на пластинах динодов. Напряжение, пропорциональное освещенности катода, снимается с анода и преобразуется в цифровой код.

Характеристики сканеров:

- Оптическое разрешение (Optical resolution) сканера измеряется в пикселах на дюйм (ppi - pixels per inch). Следует помнить, что часто используемый для описания оптического разрешения сканера термин dpi с технической точки зрения характеризует выходное разрешение сканированного изображения в зависимости от выбранного режима печати.

- Область сканирования (Scanning area) определяет размер самого большого оригинала, который может быть сканирован устройством

- Разрядность битового представления (Bit length representation) в качестве показателя степени 2 определяет максимальное число цветов или градаций серого, которые может воспринимать сканер. Для определения данного параметра цветных сканеров также используется термин глубина цвета (Color depth)

- Скорость сканирования (Scanning speed) — показатель быстродействия сканера, означает время, затрачиваемое на обработку одной строки оригинального изображения. Измеряется в миллисекундах (мс). На практике под скоростью сканирования понимают количество страниц черно-белого оригинала, сканируемых в минуту с максимальным оптическим разрешением

- Интерфейс (Interface) в описании сканера следует понимать варианты аппаратного подключения устройства к компьютеру

Для связи с РС сканеры могут использовать специальную 8- или 16-разрядную интерфейсную плату, вставляемую в соответствующий слот расширения.

В настоящее время широко используются стандартные интерфейсы, применяемые в IBM PC-совместимых компьютерах (последовательный и параллельный порты, а также интерфейс SCSI). В случае использования стандартного интерфейса, как правило, проблем с распределением системных ресурсов не возникает.

Дигитайзер

Устройство для ввода контурных изображений. Используется, как правило, в системах автоматического конструирования (САПР) для ввода чертежей в компьютер.

Для профессиональных графических работ дигитайзер (со световым пером) практически является стандартным устройством, так как он с помощью соответствующих программ позволяет преобразовывать передвижение руки оператора в формат векторной графики.

Первоначально дигитайзер был разработан только для приложений САПР, потому что в этом случае необходимо определять и задавать точное значение координат большого количества точек. Это функциональное требование при использовании обычных устройств ввода (таких как клавиатура) затруднительно, а при использовании мыши может быть выполнено неточно.

В то время как мышь может интерпретировать только относительные координаты, дигитайзер способен точно определять и обрабатывать абсолютные координаты. Для этого используется специальный планшет, который помимо того, что является рабочей ("письменной") поверхностью, имеет еще и другие многочисленные функции, позволяющие непосредственно управлять соответствующими программами. Собственно в качестве средства ввода информации служат или световое перо или (чаще) круговой курсор, с помощью которого выполняется позиционирование и можно очень точно определять координаты на планшете.

Графический планшет может иметь различные размеры, для профессиональной деятельности - форматы А2 или АЗ, для более простых работ - меньшие размеры.

studfiles.net

2.5. УСТРОЙСТВА ВВОДА/ВЫВОДА ИНФОРМАЦИИ - Основы информатики

2.5.1.ДИСПЛЕЙ.

Дисплей (монитор) – необходимое устройство вывода информации. Это устройство аналогично телевизору (электронно-лучевая трубка). Любое изображение на экране дисплея состоит из множества светящихся точек – пикселей. Дисплей характеризуется разрешающей способностью экрана – максимальное количество пикселей, используемых для создания изображения. Измеряется как количество точек по горизонтали на количество точек по вертикали. В современных ПК наиболее часто используют дисплеи с разрешающей способностью 320х200, 640х200, 640х480, 800х600, 1024х768. Дисплеи бывают цветными и монохромными. Цветное изображение получается на экране как комбинация трех основных цветов – красного, зеленого, синего. Поэтому цветные дисплеи также называют RGB-дисплеями (Red, Green, Blue).

Дисплей может работать в 2-х режимах:

  • текстовый режим –для вывода символов. Экран разбивается на 80 вертикальных полосок, каждаяиз них, как правило, разбита на 25 частей по горизонтали (иногда – 43 или 45).Каждый полученный прямоугольник называется знакоместом.В нем размещается 1 символ. Знакоместо состоит из пикселей. Часть пикселейиспользуется для изображения символа (переднийплан), а остальные образуют фон.Для изображения символа в текстовом режиме используется 16 цветов, а дляизображения фона – 8 цветов. Текущуюпозицию (знакоместо, в котором появится следующий введенный с клавиатурысимвол) указывает мигающая метка – курсор.После вывода символа в этом знакоместе курсор смещается на одну позицию(знакоместо) вправо.
  • графическийрежим – каждый пиксель экрана используется отдельно. Обычно курсор невыводится. Но в некоторых задачах возможен вывод на экран графического курсора (онотличается по виду от текстового курсора).

    Дисплей подключается к ПК через устройство сопряжения – видеоадаптер. Видеоадаптер имеет собственную память для хранения изображения, выводимого на экран. Объем этой памяти определяет количество цветов в цветовой палитре и разрешающую способность экрана. Наиболее известны видеоадаптеры CGA, EGA, VGA, SVGA.

    2.5.2. КЛАВИАТУРА.

    Клавиатура – это необходимое устройство ввода информации в ПК. Все устройства ввода служат для преобразования информации, поступающей с периферийных устройств, в цифровой вид. Сейчас наиболее часто используется 101-клавишная клавиатура. На ней выделяют следующие основные группы клавиш:

  • функциональные клавиши – [F1] – [F12]. За каждой из них в каждой конкретной задаче может быть закреплена своя функция, отличная от функции этой клавиши в других задачах.

  • символьная клавиатура – для ввода символов (верхний и нижний регистры) и пробела.

  • управляющие клавиши – нажатие которых изменяет значение других клавиш. [Shift] – перевод регистров. [CapsLock] – фиксирование верхнего регистра. [Ctrl], [Alt] – в различных комбинациях с другими клавишами изменяют их значение (регистр, язык). [Esc] – обычно используется для выхода из текущего режима работы компьютера. [Tab] – передвигает курсор на шаг табуляции или для других функций. [Backspace] – стирает последний набранный символ. [Enter] – указывает, что закончен ввод данной строки, и набранные данные поступают для обработки в компьютер.

  • цифровая клавиатура – может находиться в одном из 2-х режимов (переключается клавишей [NumLock]): режиме ввода цифр и режиме управления курсором.

  • специальные и дополнительные клавиши – [PageUp], [PageDown] – постраничный просмотр. Клавиши управления курсором – для изменения положения курсора на экране. [Pause] –пауза. [ScrollLock] – режим прокрутки экрана. [PrintScreen] – в комбинации с клавишей [Shift] является командой печати копии экранного изображения на принтере. [Del] – удаление символа над курсором. [Ins] – режимы вставки и замены.

    При нажатии на клавишу в системный блок ПК поступает сигнал, указывающий, какая клавиша нажата. Этот сигнал преобразуется в двоичный код, который поступает в память ПК. Из памяти извлекаются команды, создающие на экране дисплея изображение символа, соответствующего этому двоичному коду по таблице ASCII.

    Полезные комбинации клавиш:

    [Shift]–[PrintScreen] – печать копии экрана на принтер;

    [Ctrl]–[NumLock], [Ctrl]–[S] – приостановка выполнения программы;

    [Ctrl]–[Break], [Ctrl]–[C] – прерывание выполнения программы;

    [Ctrl]–[Alt]–[Del] - мягкая перезагрузка компьютера.

    2.5.3. ДРУГИЕ УСТРОЙСТВА ВВОДА.

    Мышь – устройство, которое преобразует свое положение на плоской поверхности стола в позицию курсора на экране дисплея. Перемещение мыши по столу приводит во вращение шар, находящийся снизу в теле мыши. Вращение шара преобразуется в сигнал, управляющий движением курсора мыши на экране дисплея. Ввод информации в компьютер осуществляется с помощью кнопок, встроенных в тело мыши (двух или трех).

    Трекбол – представляет собой перевернутую на «спину» мышь. Шар, управляющий движением курсора, находится сверху. Пользователь вращает шар ладонью или пальцем, и в соответствии с этим курсор перемещается по экрану. Трекбол удобен тем, что его не надо двигать по столу.

    Сканеры –используются для ввода в ПК различных изображений – текстов, рисунков и другой графической информации, нанесенных на бумагу или какую-нибудь поверхность. Считывающая головка сканера равномерно движется над изображением. Специальное устройство преобразует изображение в цифровые коды, которые поступают в ПК. Бывают ручные и настольные. Существует много различных моделей сканеров обоих типов.

    Джойстик, руль – манипуляторы,используемые в компьютерных играх.

    Световые перья, сенсорные экраны – достаточно коснуться пальцем поверхности экрана, чтобы указать компьютеру требуемое место на экране.

    Графические планшеты (диджитайзеры) – обеспечивают перенос изображения с накладываемого листа бумаги в ЭВМ с помощью перемещения по планшету специального указателя.

    2.5.4. ДРУГИЕ УСТРОЙСТВА ВЫВОДА ИНФОРМАЦИИ.

    Принтер – печатающее устройство. Шрифты, которыми осуществляется печать, определяются специальными программами. Существует несколько различных способов деления принтеров на типы. В зависимости от порядка формирования изображения:

  • последовательные– формируют символ за символом;
  • строчные;
  • страничные.

    По физическому принципу действия:

  • матричные – изображение формируется из точек ударами иголок по красящей ленте. Можно получать сразу несколько копий (копировальная бумага). Печатающая головка может иметь 9, 18 или 24 иголок.

  • Струйные – печатающие головки вместо иголок содержат тонкие трубочки – сопла, через которые на бумагу выбрасываются капельки чернил. Может быть от 12 до 64 сопел, диаметры которых тоньше человеческого волоса.

  • Лазерные – изображение на бумаге создается с помощью лазерного луча. Достоинства: высокое качество и большая скорость печати, водоупорный отпечаток.

    Плоттер (графопостроитель) – устройство, предназначенное для изображения выводимых из компьютера графиков, диаграмм, чертежей на бумаге. Плоттеры делятся на:

  • Фрикционные – бумага подается в вертикальном направлении, а рисующее устройство движется в горизонтальном направлении.

  • Планшетные – бумага не движется, а рисующее устройство перемещается вдоль обеих осей – вертикальной и горизонтальной, нанося изображение на бумагу.

  • Барабанные – рулонная бумага непрерывно подается в графопостроитель с помощью специального устройства. Рисующее устройство работает так же, как и во фрикционных.

    2.5.5. МОДЕМ.

    Модем (модулятор-демодулятор) – это устройство, предназначенное для преобразования сигналов телефонной сети в сигналы компьютера и наоборот. Данные поступают из передающего компьютера в виде двоичных чисел. Модем принимает эти данные и разделяет их на информацию, которая должна быть передана в телефонную линию, и команды, определяющие характер передачи информации. Команды выполняются модемом. Передаваемая информация преобразуется модулятором модема и поступает в линию. Сигнал, выходящий из модема в телефонную линию, имеет две различные частоты: для передачи единиц – большая, нулей – меньшая. Модем принимающего ПК демодулирует приходящий сигнал, т.е. преобразовывает сигнал телефонной линии в двоичный сигнал и посылает его в ПК. Обмен информацией между двумя ПК может осуществляться двумя способами:

  • Полудуплексный способ– компьютеры передают информацию друг другу по очереди.
  • Дуплексный способ– обмен информацией происходит одновременно. При этом сигналы от компьютеров несмешиваются, т.к. каждый ПК передает данные на своих частотах, отличных отчастот другого ПК.

    2.6. ОБЩАЯ СХЕМА АППАРАТНОЙ ЧАСТИ КОМПЬЮТЕРА.

  • computer-lectures.ru