Сколько хранится информация на жестком диске: Где лучше сохранится информация спустя 20−50 лет

Где лучше сохранится информация спустя 20−50 лет







Постоянный запрос в поисковики «как именно нужно хранить информацию». На жестких дисках или твердотельных накопителях? Можно ли единожды произвести запись и оставить накопитель в покое на несколько лет, либо необходимо периодически (раз в полгода или год) перезаписывать его, чтобы данные не исчезли или не повредились?

Какого-то единственного правильного решения такой задачи нет, поскольку исходя из личного опыта многие пользователи предлагают разные достижения поставленной цели. После прочтения постов на разных форумах становится понятно одно — хранить важную информацию на неиспользуемых на постоянной основе накопителях нельзя. Дело не только в размагничивании самих дисков или деградации ячеек памяти, но и увеличении энтропии, ведущей к искажению данных, то есть появлению битых файлов.

Кстати, насчет энтропии: это одна из причин, почему космическое оборудование намного слабее того, которым мы пользуемся на Земле. Все дело в плотности микросхем, так как современное «железо» стремится к уменьшению техпроцесса, а чем плотнее компоненты, тем они более уязвимы к космическому излучению и солнечной радиации. Долгосрочное хранение информации на жестких дисках и SSD имеет аналогичные проблемы, поскольку электромагнитные излучения, перепады температур и влажности еще никто не отменял. Так как же правильно хранить важные файлы, как снизить риск их потери и как, собственно, умирают данные — с этим мы и намерены сегодня разобраться.

Деградация ячеек и размагничивание данных на диске

Сначала разберемся с размагничиванием пластин в жестких дисках, ведь там считывание информации зависит от трех главных параметров: точности позиционирования механизма считывающей головки, чувствительности головок и мощности магнитного поля болванок. В нормальных условиях, когда соблюдаются рекомендуемые производителем показатели влажности, температуры в помещении, а также отсутствуют механические удары и вибрация, сильные электромагнитные поля, деградация магнитного поля пластин составляет около 1% в год.

При этом сказать, что через условные 50 лет половина диска станет нечитаемой, будет неправильно. Обычно в таких случаях наличие битых файлов или вовсе их исчезновение будет связано не столько с ухудшением магнитной записи, сколько с деградацией материалов, отвечающих за точность позиционирования и чувствительность считывающих головок. Поэтому переживать за сохранность информации не стоит, поскольку неработающий должным образом такой жесткий диск всегда можно отнести к специалистам, которые без проблем считают и восстановят 100% данных напрямую с пластин. Это касается и вышедших из строя жестких дисков, в которых сломалась электроника, но «блины» не были повреждены механически ни считывающей головкой, ни наличием трещин и сколов. Единственный минус: стоимость услуг по восстановлению файлов может обойтись в копеечку.

Стоит ли так рисковать и оставлять на полке жесткий диск на 5−10−20 лет? На самом деле, нет. Несмотря на то, что многие могут похвастаться, что их жесткие диски успешно были считаны спустя 10−15 лет простоя на пыльной полке, есть много и негативных отзывов, когда после длительного хранения «харды» попросту отказывались раскручивать пластины. Связано это с тем, что жесткие диски предназначены для постоянной работы, поскольку в процессе своей жизнедеятельности они постоянно обновляют магнитный слой пластин и тем самым могут работать без сбоев десятки лет. Поэтому лучшим решением является постоянная перезапись данных с одного носителя на другой раз в год, если это действительно очень важные файлы.

Если планируется перезапись информации с одного «харда» на другой, то для этих целей лучше использовать проверенные временем устройства 3−5 летней давности (можно и больше) без наличия битых секторов! Жесткие диски, особенно современные модели, подвержены «детской смертности» — они до 40 раз имеют больше шансов выйти из строя в первые год-два эксплуатации, чем старшие собратья, отработавшие минимум 3 года.

Деградация ячеек на SSD

Большая часть современных SSD-накопителей используют метод ловушки заряда в ячейки памяти — CTF (Charge Trap Flash). Сами же ячейки на сегодняшний день в зависимости от стоимости твердотельного накопителя могут быть 4-х видов: SLC (хранение 1 бита информации), MLC (2 бита), TLC (3 бита) и QLC с хранением в ячейке 4 бит данных. В зависимости от количества хранимых бит в одной ячейке варьируется и емкость SSD — чем больше, тем лучше. Но у этого свойства есть и обратная сторона медали: чем выше количество бит в одной ячейке, тем больше уровней напряжения требуется для записи информации, а потому материал диэлектрика в ячейках памяти изнашивается быстрее. Важно уточнить, что деградация происходит только при записи данных, а при их считывании нагрузки на диэлектрик практически нет.

Фото: profesionalreview.com

Значит ли это, что SSD можно единожды записать и хранить его долгие годы вне компьютера, а после удачно считать с него важную информацию? Можно, но ограниченное время. Например, компания DELL в документации к производимым твердотельным накопителям указывает, что ее SSD способны хранить информацию без подключения к питанию минимум 10 лет. При этом бренд отмечает, что если flash-память уже значительно изношена, то без питания данные могут храниться на накопителях до 3 месяцев для MLC и до 6 месяцев для SLC-ячеек.

Фото: surl.li

Виджет Яндекс.Маркет

Вечного архива не существует

Подводя итог о долгосрочном хранении данных на жестких дисках и SSD — ни первые, ни вторые не проектируются производителями для многолетнего архивирования информации. Для этих целей у компаний есть специальные оптические диски «архивного уровня», как например, DWD + RW или Blu-Ray диски, срок службы которых может достигать до 30 лет и даже больше. Что касается безмятежного и безопасного хранения данных на срок до 100 лет, то таких решений на сегодняшний день еще не найдено.

Стоит ли хранить данные в «облаке»?

Если отбросить устоявшиеся мифы о том, что данные пользователей, хранящиеся в «облаке» с легкостью могут украсть хакеры, или исчезнуть в результате стихийного бедствия, то облачные хранилища действительно надежны по состоянию на 2021 год. Крупные корпорации, которым принадлежат огромные сервера в разных странах, куда серьезнее относятся к безопасности и сохранности данных, нежели простые пользователи. Поэтому если и делать выбор между локальным хранением информации на HDD/SSD или предоставить эту услугу «облаку», то в плане надежности второй вариант предпочтительнее. К слову, он и удобнее, так как доступ к файлам будет всегда и везде — достаточно иметь под рукой смартфон и выход в Интернет. С другой стороны, такое удобство и безопасность в финансовом плане обойдется дороже.

Значит ли это, что данные в «облаке» никогда не исчезнут? Несмотря на то, что дата-центры имеют подстраховку в виде резервных копий, иногда и они безвозвратно теряют данные. Случается это крайне редко и теряется лишь малая часть информации, но факт остается фактом. Например, в 2015 году очень не повезло дата-центру компании Google, расположенному в Бельгии. В него 4 раза подряд ударил разряд молнии, и несмотря на все попытки восстановить все данные, безвозвратно было потеряно около 0,000001% информации. За последние 6 лет подобных происшествий больше не случалось несмотря на неоднократные неприятные инциденты, связанные с серверами (например, в марте 2021 года полностью сгорел страсбургский OVH SBG2, но ни один важный файл потерян не был).

Удалить с «облака» не так уж просто

Когда пользователь что-то удаляет с облачного хранилища, это не значит, что стертые файлы исчезают бесследно. Наглядным примером служит история, случившаяся в 2017 году, когда облачный сервис Dropbox из-за бага восстановил для части пользователей удаленные несколько лет назад данные.

Как умирают файлы на дисках

Что на жестких дисках, что на SSD информация умирает плюс-минус одинаково: обычно видеоролики «рассыпаются» на крупные пиксели различных цветов, разъезжаются на полосы или картинка застывает/видеозапись обрывается. Что касается фотографий, то они начинают демонстрировать артефакты (снова пиксели, полосы, часть картинки может быть залита одним или несколькими цветами), а музыкальные файлы начинают «булькать», издавать резкие звуки, обрываться на воспроизведении в любой момент. Прочие документы могут и вовсе не открываться.

Фото: datamoshing.com

При этом стоит понимать, что файлы сами по себе не могут деградировать. Если они открываются, то с вероятностью 99,9% они содержат ровно тот же код, что и при записи. Почему тогда они становятся «битыми»? Здесь проблема кроется в основном в некорректности считывания и последующей записи. Для HDD, как мы уже говорили, это потеря чувствительности и сбой позиционирования считывающих головок при полной сохранности данных на самих болванках. Для SSD ситуация сложнее, ведь там могут «барахлить» и контроллер памяти, и сама NAND-память. К слову, именно поэтому с SSD восстановить информацию сложнее, а порой и невозможно, в отличие от жестких дисков.

Виджет Яндекс.Маркет

Как лучше хранить данные: локально или онлайн?

Какой вывод можно сделать насчет долгосрочного архивирования важной информации? Лучшим вариантом станет хранение файлов на жестких дисках, проверенных временем (3−5 лет без BAD-секторов) с периодической перезаписью данных раз в год на резервный HDD. При этом еще лучше иметь бэкап в «облаке», чтобы на 100% быть уверенным, что важные данные никогда и никуда не потеряются в течение как минимум нескольких десятков лет. Увы, но обойтись одним единственным решением сейчас невозможно, поскольку соответствующих технологий еще не разработано.

Это тоже интересно:

Автор: Павел Колесников

лайфхаки

Подпишитесь на нас

Новости Hi-Tech Mail.ru

Нажимая «Подписаться» вы соглашаетесь с условиями использования

  • Mail.Ru
  • О компании
  • Реклама
  • Редакция
  • Условия использования материалов
  • Обратная связь





Как долго или где быстро хранить информацию на диске / Хабр

Добрый день, Гиктаймс!

Некоторое время назад, на тостере попалось несколько интересных вопросов о хранении информации на жестких дисках, которые вызвали желание копнуть немного глубже, и я провел небольшое исследование.

Часть информации уже пробегала на Хабре, но не все. А кое-что я не смог найти в русскоязычном инете, поэтому и решил поделиться найденным с сообществом.

Про размагничивание данных на диске.


В нормальных бытовых условиях (отсутствие резкой смены температуры/влажности/давления, отсутствие ударов), намагниченная поверхность диска может хранить информацию несколько десятков лет. Гарантировать сложно, так как реальные промышленные тесты не проводились, а те, что проводятся — обычно как раз и представляют собой смену внешних условий для воздействия аггрессивной средой.

Но большинство сходятся на том, что мощность магнитного поля деградирует со скоростью примерно 1% в год.

При этом нельзя сказать, что через 50 лет не прочитается половина диска — это некорректно, ибо деградация поля не равна поломке — тут роль играет чувствительность считывающих головок и точность механизма позиционирования.

Даже в одной партии жестких дисков хорошего производителя на выходе получаются немного отличные пластины, и цельное устройство тщательно калибруется на заводе. Повторная калибровка в домашних условиях невозможна.

Со временем, внешне может показаться, что это ухудшилась магнитная запись, но в подавляющем большинстве случаев — ухудшение считывания связано с механической деградацией материалов — это вызывает и ошибки позиционирования и чувствительность головок.

Если важные для вас данные перестали считываться со старого жесткого диска — скорее всего дело в деградации механики/электроники, и их можно считать в специальных компаниях, которые специализируются на восстановлении даных — винчестер разберут, блины вынут и установят на отдельное устройства, после чего считают с них данные напрямую.

Даже если механика и электроника полностью навернулась — сами пластины и информация на них подлежит считыванию.

Есть множество свидетелей, у которых старые диски, лежащие в шкафчике, отлично читаются спустя 15, и даже 20 лет (я, кстати, тоже один из них). А бывает, что диск не заводится, едва перейдя гарантийный срок годности.

Итак, в современных дисках сперва выходит из строя электроника и механика, раздалбываются разъемы, могут даже устареть стандарты, но вряд ли основной причиной будет размагничивание данных.

К этому можно еще добавить, что первыми должны размагнититься низкоуровневые разметки дорожек и секторов, которые были нанесены производителем, и которые штатными способами пользователь перезаписывать не сможет. Правда мощность поля у разметки гораздо выше, что заметно под микроскопом, но тем не менее ничто не вечно.

Выводы из этого пункта — перезаписывать информацию на диске, чтобы «обновить» магнитную запись — нет никакого резона.

Гораздо важнее обеспечить отсутствие агрессивного внешнего воздействия, как самое элементарное — закрутить его понадежнее, чтобы уменьшить вибрации. Включение-выключение ведет к тому, что температура диска меняется и следовательно материал расширяется и сужается. Это один из важных факторов, почему быстрые HDD живут меньше, чем медленные диски из «green» серий, у которых перепад температуры гораздо меньше. Но не стоит забывать, что если диск на ощупь не горячий, это не значит, что металл не расширился — каждый цикл включения-выключения ускоряет деградацию материала, просто у «холодных дисков» она заметно меньше.

Если ваш компьютер регулярно засыпает и просыпается, по нескольку раз в день, а питается он от сети — имеет смысл увеличить срок ожидания до выключения диска при питании от сети. Современные жесткие диски в режиме простоя потребляют всего пару ватт.

О секторах


Это не совсем 512 байт. Это область, в которой для пользовательских данных выделено 512 байт. Также есть служебная информация о секторе — это низкоуровневая метка начала и конца сектора, а также блок коррекции данных, обычно он идет после пользовательских данных. Плюс неразмеченное место между секторами (gap).

Метки сектора наносятся производителем во время так называемого низкоуровневого форматирования. В древние годы, это можно было делать самостоятельно из BIOS, но сейчас штатными способами это уже недоступно пользователю. Объем служебных данных, может варьироваться в зависимости от оптимизации firmware диска, но в считается, что сектор вместе со служебными данными занимает 577 байт. Плюс gap.

Точнее так было раньше.

В 2007 году было предложено увеличение размера сектора, и после процедур согласования и утверждения, начиная с 2011 года, все выпускающиеся диски уже форматируются с сектором размером в 4096 байт пользовательских данных (примерно 4211 байт со служебными данными) — так называемый Advanced Format.

Упрощение адресации низкоуровневых секторов, которых стало в восемь раз меньше при том же объеме — это и увеличение производительности за счет упрощения расчетов и работы с бОльшими блоками, и эффективность использования диска заметно увеличилась. Насколько? Давайте дочитаем следующий абзац.

Блок ECC данных


В 512 байтных секторах, ECC Блок занимал 50 байт. В 4096 байтных секторах, ECC блок увеличился до 100 байт, но зато уменьшилось количество самих секторов. И на самом деле ECC занимает теперь в четыре раза меньше (100 байт на 4096 байт против 400 байт на 8*512 байт).

Вдобавок, на более длинной цепочке данных алгоритм коррекции работает эффективнее, в результате и место сэкономили и эффективность увеличили. По разным оценкам скорость вычисления ECC увеличилась на 5-10%. А значит, контроллер диска меньше напрягается и может заняться другими вещами. Косвенно это влияет и на общую производительность записи/чтения данных.

Один из главных плюсов — это конечно экономия места.

Суммарно — уменьшение объема, выделенного под блоки ECC, уменьшение общего количества секторов (меньше gap, меньше меток, меньше индексов для адресации секторов) — общий размер места, выделяемый для пользовательских данных, увеличился более чем на 10%!

Есть и еще один маленький плюс, связанный с большими секторами. В случае брака или дефекта поверхности, сразу плохим будет помечен бОльший участок. Если пометить мегабайт секторов по 512байт, это займет в разы больше времени, чем по 4кб.

Вдобавок нечитаемая часть будет помечена более надежно — если мы обрезаем подгнивший или червивый кусок вкусного яблока, мы отрезаем часть хорошего — так и в жестком диске — лучше пометить плохой участок не в притык.

Но конечно от дисков с бэдами лучше быстрее избавиться.

Единственное исключение — логические бэд блоки. Они связаны именно с ECC — когда по разным причинам (внезапно отключилось электричество, баг firmware, лунные бури…), и ECC оказался некорректным — такой сектор контроллер диска будет считаться сбойным. Именно их можно исправить пересканированием плохих секторов — утилит сейчас существует множество, начиная с известной Victoria.

Про виртуальные 512- байтные сектора


Логотип с «512e» означает, что сам диск уже 4кб-секторный, но работает в режиме эмуляции виртуальных 512 байтных секторов.

Логотип с «4Kn» говорит, что диск поддерживает 4к нативный интерфейс, такие диски в продаже с 2014 года.

Многие все еще популярные ОС (тут я говорю про Windows 7 и Windows Vista), не поддерживают 4к диски нативно.

Тем не менее, старые диски на них работают отлично, а новые диски предоставляют интерфейс с виртуальными 512-байтными секторами.

О виртуальных 512-байтных секторах следует помнить, когда вы тестируете 512е диски, или во время теста работаете на устаревшей ОС.

Например, запись рандомных 512-байтных секторов в таких условиях будет выглядеть как «считать 4кб, записать 4к», что явно будет выдавать непонятную деградацию скорости на графике. В тоже время как линейная скорость записи и чтения будет показывать нормальную производительность.

Windows поддерживает 4кn диски нативно, начиная с Windows 8 и Windows server 2012.

Про Cluster Straddling.


Это касается именно тех дисков, которые работают в 512е эмуляции (а таких в ходу еще много)

Разобъем такой диск на разделы и отформатируем с дефолтными настройками. Стандартный кластер NTFS- 4 килобайта. Блок HFS+ (или ext4) — обычно тоже 4 килобайта. И физический сектор диска — уже тоже 4 килобайта. Очень удобный размер (даже x86 mem страница — тоже 4 кбайта).

Но во время разбития 512e диска на разделы, может выйти так, что раздел будет начинаться начинается не с начала 4-к сектора, а со смещением, кратным 512 байт.

В результате 4 килобайтный кластер/блок будет лежать между двумя 4 килобайтными физическими секторами жесткого диска.

Каждый раз при чтении такого кластера, жесткий диск (из-за логики своей работы) будет считывтаь два сектора целиком. При записи тоже не все гладно.

Эту проблему решают различные align утилиты — тот же WD Align Tool или HGST Align Tool для Windows 7 и выше.

Только применять их нужно ПОСЛЕ того, как вы разбили диск на партиции — утилита проверит, что границы партиций совпадают с началом нового 4кбайтного сектора, и подвинет их, если это потребуется. После чего можно работать без падения производительности.

Где информация читается быстрее — в начале или в конце диска?


На жестких дисках, первый сектор находится на внешней стороне диска, а последний сектор — на внутренней.

В начале времен, количество секторов на дорожке было одинаково, но это было настолько в дремучее время, что можно и не вспоминать. Сейчас дорожки, находящиеся ближе к началу диска (внешней стороны), содержат больше секторов.

Итак, линейная скорость записи и чтения информации расположенной в начале диска, значительно выше. Точные цифры зависят от производительности самого диска, но в процентах — разница может составлять 200% и даже немного больше процентов между самыми крайними дорожками (!)

Количество секторов на дорожку указывается не индивидуально, а для зоны, в которые объеденено несколько дорожек, поэтому разница в скорости будет видна не для двух крайних дорожек, а для двух крайних зон и постепенно снижаться к середине диска. Вдобавок эмперически можно сказать, что «быстрых» секторов на диске больше — поскольку их просто больше на внешней части диска.

Как же хранить?


Если сравнивать с CD, DVD и флешками — CD и флеш диски явно проигрывают в длительности хранения данных. DVD могут поспорить, но тут все неоднозначно — нужны и качественные болванки, и хороший привод, и запись производить не на максимальной скорости, и все равно, есть вероятность, что данные перестанут читаться. Вдобавок, 4.5 или даже 9 гб на DVD — это не так уж много, плюс отсутствие комфорта. И сохранить можно только раз — связываться с DVD-RW для длительного хранения данных вообще не стоит.

Я записал в свое время свыше 5000 CD/DVD дисков, тестировал чтение. Конечно качество чтения и долговечность зависела от качества болванки, но тот же самый Verbatim, который был одним из эталонов CD-R 650, в DVD был довольно посредственным.И в каждой партии могло встретиться что-то неудачное.

Если брать Blue Ray диски, то стоимость пишущего привода и болванок такова, что если не дешевле, то почти равноценно через 5 лет купить новый жесткий диск и переписать на него данные.

На текущий момент, недорогие способы хранения личных данных в основном делятся на:

* Если данных не слишком много, и инет позволяет — можно хранить в облаке, а лучше в двух разных независимых облаках, предварительно зашифровав данные трукриптом/архиватором. Тут я прорекламирую WinRAR, который кроме архивирования с паролем, вдобавок умеет использовать ECC. Можно увеличить размер архива на некоторый процент, но зато иметь возможность восстановить данные из любого поврежденного места этого архива, в пределах этого процента. Есть даже возможность разбивать архив на тома, и том для восстановления создать отдельным файлом. В древности, я этим активно пользовался со старыми дискетами, когда целая дискета могла просто не прочитаться в чужом дисководе.

* Съемный HDD, но рекомендую менять носитель с периодичностью в 3-5 лет на более новый, стараясь не слишком далеко отходить от гарантийного срока. Можно просто купить SATA/USB переходник и апгрейдя системный диск на более быстрый/емкий, старый диск отдавать под бэкапы.

* Купить недорогой домашний NAS с рейдом и настроить обычное простое зеркало. Этот способ заметно дороже предыдущих двух, но в случае выхода из строя одного из дисков, вам нужно будет просто заменить поломанный диск на новый, и рейд контроллер сам выполнит подключение нового диска в массив и заполнит его данными. То есть ничего не нужно будет настраивать заново, искать и восстанавливать информацию из разных бэкапов. Просто заменил диск и все. NAS также очень нетребователен по питанию, его можно оставить включенным постоянно и автоматизировать все процессы бэкапов.

UPD: DaemonGloom рекомендует замечательные устройства WD My Cloud Mirror, которое идет практически по цене жестких винтов, плюс небольшая переплата за корпус/контроллер:

«По текущим ценам — устройство на 2x4TB даёт 100 долларов переплаты, 2x6TB — 80 долларов.»

Лично я делаю резервную копию всего важного на второй диск, и периодически скидываю архивы на внешний USB диск вручную.

Таким образом есть а) рабочая копия, б) ежедневный архив на втором диске, и с) примерно ежемесячный архив на внешнем отключенном диске. Но в принципе уже начинаю подумывать про NAS.

А как храните вы?

Растущий размер носителей: сколько информации можно хранить на 1 ТБ?

Когда дело доходит до хранения данных, многим из нас трудно понять, сколько информации может поместиться на портативном жестком диске или обычном флэш-накопителе USB. Многие из нас, вероятно, даже не заполнили свои личные жесткие диски или приблизились к этому. В эпоху больших данных USB-накопители и портативные жесткие диски стали технологическими магистралями, соединяющими данные между устройствами.

Теперь давайте подумаем, сколько информации и данных можно хранить на жестких дисках объемом один терабайт (1 ТБ). Для справки: жесткий диск емкостью 1 ТБ эквивалентен 1000 гигабайтам (ГБ). Так может пару тысяч фото? Сто фильмов или около того? Что ж, ответ может вас шокировать, поэтому давайте разберем его по типу носителя.

Изображения

В зависимости от типа и размера файла на жестком диске емкостью 1 ТБ может храниться от 250 000 до 310 000 изображений. Только представьте, сколько семейных фотоальбомов можно заполнить 250 000 изображений. Это непостижимо! Некоторые из вас могут подумать: «Зачем вору мои личные фотографии?» Хотя данные, хранящиеся на личных фотографиях, не всегда могут быть конфиденциальными, они по-прежнему являются частными и позволяют установить личность. Это означает, что если вор украдет ваш диск емкостью 1 ТБ, заполненный семейными фотографиями, риск взлома все еще может быть высоким, поскольку любая информация, предлагаемая на фотографиях, теперь является честной игрой. Вор может узнать, какие материальные ценности у вас есть, такие как автомобили, драгоценности, мебель, где вы любите отдыхать, где вы живете и как вы выглядите, что значительно облегчит кражу в будущем и нацеливание на нее.

Изображения могут показаться низкими в отношении конфиденциальной информации, но они могут предложить больше информации, чем вы, вероятно, готовы отказаться

Изображения могут показаться низкими в отношении конфиденциальной информации, но они могут предложить больше информации, чем вы. вероятно, готовы сдаться. Возьмем, к примеру, прошлогоднюю утечку данных Таможенной и пограничной службы США (CBP). В июне 2019 года CBP опубликовала заявление о том, что фотографии и видеозаписи менее 100 000 человек и их транспортных средств были украдены в рамках нападения на федерального субподрядчика.

Фотографии и видеозаписи использовались в растущей программе распознавания лиц, чтобы помочь CBP в отслеживании личности людей, въезжающих и выезжающих из Соединенных Штатов. Фотографии и кадры изначально были сделаны в различных американских аэропортах и ​​наземных пограничных переходах, где за короткий период времени были запечатлены номерные знаки и лица транспортных средств. Хотя воры не смогли получить другую идентифицирующую информацию, такую ​​как паспорта или проездные документы, этот тип нарушения не следует преуменьшать, поскольку жертвы теперь подвергаются значительному риску кражи личных данных.

Видео и аудио

Любители домашнего видео могут порадоваться, потому что хранить все ваши семейные видео в одном месте стало намного проще. На жестком диске емкостью 1 ТБ может храниться до 500 часов видео высокой четкости 1080p — это чуть более 20 полных дней! Для сравнения, общее время работы всех фильмов Кинематографической вселенной Marvel (всего 23) составляет примерно 50 часов — это одна десятая объема памяти.

У вас есть обширная музыкальная библиотека? Вам тоже повезло! На жестком диске емкостью 1 ТБ может храниться до 17 000 часов аудиофайлов, что составляет примерно 708 дней. Все еще не можете понять столько музыки? Представьте себе, что вы прослушали всю дискографию студийного альбома U2 24 раза или прослушали всю дискографию Rolling Stones 15 раз. Вот это плейлист для путешествий!

Документы

А вот и самая невероятная часть. На жестком диске емкостью 1 ТБ может храниться (…подождите…) 85 миллионов документов, если мы строго говорим о документах Microsoft Word. Примите это на мгновение. Восемьдесят пять  миллиона  документов. Вся жизнь человека может уместиться на диске, и при этом останется еще много свободного места. Счета, номера социального страхования, информация о банковских счетах, документы, свидетельства о рождении и многое другое можно хранить на 1 ТБ, что делает их золотой жилой для хакеров и воров.

Лесли Джонстон, руководитель отдела разработки репозиториев Библиотеки Конгресса, отметила, что на жестком диске емкостью 1 ТБ может храниться столько же информации, сколько одна десятая Библиотеки Конгресса. Вот от этого сравнения у нас кружится голова! Страшно подумать о непоправимом ущербе, который могут нанести хакеры и воры, располагая таким большим количеством информации.

«В Соединенных Штатах средняя стоимость утечки данных может привести к тому, что организация заплатит более 8,9 млн долларов США»

В Соединенных Штатах средняя стоимость утечки данных может привести к тому, что организация заплатит более 8,9 долларов США.м, в среднем от 146 до 250 долларов за скомпрометированную запись. А теперь представьте, сколько будет стоить взлом 85 миллионов документов.

Риск утечки данных может быть неизмерим, а последствия не всегда немедленны. Вы можете узнать больше о том, как покупка собственного оборудования для уничтожения данных с истекшим сроком эксплуатации может сэкономить вам и вашей организации миллионы долларов здесь.

Очевидно, что на одном жестком диске емкостью 1 ТБ может легко храниться информация за всю жизнь (а затем и некоторые другие), поэтому наличие безопасного плана уничтожения в конце срока службы имеет решающее значение для защиты этих данных. Защитите себя, своих сотрудников и свою компанию от будущих утечек данных с помощью одного из наших различных высококачественных устройств размагничивания магнитных носителей, включенных в список NSA/CUI, и неклассифицированных устройств для размагничивания магнитных носителей, ИТ-уничтожителей и корпоративных ИТ-шредеров. Кроме того, любой из наших выдающихся сотрудников отдела продаж будет более чем рад помочь ответить на любые ваши вопросы и помочь определить, какая машина лучше всего удовлетворит ваши потребности в уничтожении.

Предоставлено вам

Что такое жесткий диск?

Общие сведения о жестких дисках

Жесткий диск — это аппаратное обеспечение, используемое для хранения цифрового содержимого и данных на компьютерах. У каждого компьютера есть внутренний жесткий диск, но вы также можете приобрести внешние жесткие диски, которые можно использовать для расширения памяти компьютера. Здесь мы рассмотрим различные типы жестких дисков, их преимущества и недостатки.

Типы вторичного хранилища

Всем компьютерам требуются диски для хранения данных на долгосрочной основе. Это известно как вторичное хранилище, а ОЗУ (оперативное запоминающее устройство) компьютера является его основным хранилищем.

Вообще говоря, вторичное хранилище бывает двух видов: жесткие диски (HDD) и твердотельные накопители (SSD). Хотя вы можете видеть, что твердотельные накопители называются типами жестких дисков, это не слишком точно, и важно понимать разницу между жестким диском и твердотельным накопителем.

Что такое жесткий диск?

Более «традиционный» тип жесткого диска — HDD.

Жесткие диски состоят из намагниченных дисков, известных как пластины, которые быстро вращаются, обычно со скоростью от 5400 до 15000 об/мин. Чем быстрее вращается магнитный диск, тем быстрее ваш компьютер получает доступ к информации с него.

Все цифровые данные представлены в виде двоичного кода — последовательности нулей и единиц, которые могут представлять любую часть информации. Головки чтения/записи жесткого диска используются для ввода этих единиц и нулей путем намагничивания частей пластины. В каждой крошечной части пластины находится бит, который будет равен либо 1, либо 0. Головка может определять магнетизм каждой части, тем самым «считывая» с нее информацию. Та же головка, которая может «считывать» данные, может и «записывать» их, изменяя намагниченность битов на пластине.

Каждый раз, когда вносятся изменения — например, при сохранении нового файла или удалении файла — головка жесткого диска соответствующим образом регулирует магнетизм диска. Вы можете представить его как проигрыватель, где виниловый диск — это пластина, содержащая информацию, а рука — это головки, которые сканируют эту информацию.

Поскольку данные хранятся на магнитах, жесткие диски являются энергонезависимыми устройствами, то есть они сохраняют данные, даже когда компьютер выключен.

В настоящее время максимальная емкость внутренних жестких дисков может достигать 20 ТБ. С момента появления SSD жесткие диски редко используются в качестве вторичного хранилища компьютера, но по-прежнему надежны в качестве внешнего хранилища.

Что такое SSD?

SSD (твердотельные накопители) относятся к более новому типу жестких дисков. Они стали предпочтительным форматом для внутренних жестких дисков ноутбуков высокого класса, и все смартфоны и планшеты также используют форму SSD.

В твердотельных накопителях используется флэш-память, которая также используется во флэш-накопителях USB и картах памяти для цифровых камер. Здесь не задействованы магниты, в твердотельных накопителях используются полупроводники, которые хранят данные, изменяя электрическое состояние триллионов цепей, содержащихся в твердотельном накопителе. Поскольку в них нет движущихся частей, они не только работают быстрее (поскольку вам не нужно ждать, пока диски начнут вращаться, а головки будут собирать информацию), но и служат дольше, чем жесткие диски.

SDD намного дороже в производстве, поэтому, хотя они все чаще используются в качестве основного диска для высокопроизводительных ноутбуков и ПК, многие по-прежнему предпочитают жесткие диски как более дешевый внешний вариант.

Краткая история жесткого диска

После экспериментов с магнитной лентой как средством хранения данных в 1956 году группа специалистов IBM под руководством Рейнольда Б. Джонсона разработала первый коммерческий жесткий диск.

Команда IBM обнаружила, что они могут хранить данные на намагниченных металлических дисках, которые могут быть перезаписаны новой информацией, что привело к созданию первой системы жестких дисков, известной как RAMAC (метод учета и контроля с произвольным доступом).

Первоначальный жесткий диск был размером с два холодильника и имел в общей сложности 50 24-дюймовых пластин, вращающихся со скоростью 1200 об/мин. Несмотря на свой размер, RAMAC имел емкость всего 5 МБ — размер одного образа, и, несмотря на свою емкость, стоил около 10 000 долларов за мегабайт.

RAMAC размещались в центрах обработки данных IBM до тех пор, пока IBM не представила съемные носители в 1960-х годах. IBM 1311 Disk Storage Drive 1962 года вмещал 2,6 МБ на шести 14-дюймовых пластинах. Они были размером примерно с посудомоечную машину.

Персональные настольные компьютеры появились в 70-х годах, и в то же время IBM разрабатывала первые гибкие диски. Дискета, впервые выпущенная в 1971 году, стала первым легко переносимым магнитным диском. Можно считать его первым внешним жестким диском. Дискеты стали стандартом для дисковых хранилищ, пока записываемые компакт-диски и USB-накопители не стали преобладать на рубеже веков. Первый жесткий диск для чтения/записи для персональных компьютеров был выпущен в 1972 году компанией Memorex.

К 1980 году многие крупные компании присоединились к игре с жесткими дисками, и накопитель ST-506 от Shugart Technology стал самым компактным жестким диском, доступным в то время, с диагональю 5,25 дюйма и емкостью 5 МБ. Тем временем IBM выпустила IBM 3380, первый жесткий диск с объемом памяти 1 ГБ.

В 1983 году Rodime представила RO352, первый 3,5-дюймовый жесткий диск с двумя пластинами и емкостью 10 МБ. 3,5-дюймовые жесткие диски вскоре станут стандартом для настольных компьютеров и используются по сей день (с 2,5-дюймовыми жесткими дисками для ноутбуков).

Именно в 80-х внешние жесткие диски, с которыми мы знакомы сегодня, начали приобретать форму, и со временем, когда физический размер внешних жестких дисков уменьшился, емкость жесткого диска увеличилась.

Что делает жесткий диск?

Проще говоря, жесткий диск хранит данные. На компьютере это включает в себя все ваши фотографии, видео, музыку, документы и приложения, и, кроме того, код операционной системы вашего компьютера, фреймворков и драйверов также хранится на жестких дисках. Емкость жесткого диска измеряется в мегабайтах (МБ), гигабайтах (ГБ) и терабайтах (ТБ).

Это отличается от ОЗУ (оперативного запоминающего устройства), которое представляет собой временное хранилище компьютера, которому для хранения данных требуется электричество, что делает его энергозависимой памятью — оно сохраняет данные только при включении компьютера. Оперативная память не используется для личных данных, только для компьютерных данных. Вашему компьютеру нужна память, чтобы работать бесперебойно и позволять вам переходить от задачи к задаче или от приложения к приложению, не теряя того, где вы были. Оперативная память известна как основное хранилище, а жесткие диски и твердотельные накопители относятся к вторичному хранилищу.

Жесткий диск — это устройство хранения, необходимое для хранения ваших файлов и данных в течение длительного времени. Всякий раз, когда вы сохраняете файл на свой компьютер, вы сохраняете его на жесткий диск вашего компьютера. Жесткий диск похож на картотечный шкаф для ваших цифровых файлов.

Что такое внешний жесткий диск?

Внешний жесткий диск — это жесткий диск, не встроенный в компьютер. Это портативные устройства, которые можно подключить к любому компьютеру для доступа к хранящимся на нем данным. В то время как внутренние жесткие диски напрямую подключены к материнской плате компьютера и в дополнение к вашим файлам хранят данные операционной системы, платформы, драйверы и программное обеспечение, внешние жесткие диски используются в основном для хранения личных файлов.

Жесткий диск компьютера обычно можно извлечь и обновить, но это трудная задача, поэтому многие выбирают внешние жесткие диски, когда на их компьютере заканчивается свободное место.

В наши дни внешние жесткие диски могут хранить до 20 ТБ данных, что более чем в миллион раз больше, чем мог предложить самый первый жесткий диск в 1956 году. Эти емкости в сочетании с портативностью и доступностью внешних жестких дисков сделали их лучшее решение для увеличения мощности компьютера, пока не появились облачные хранилища.

Недостатки использования внешних жестких дисков для хранения данных

По сравнению с простым использованием внутреннего хранилища вашего компьютера внешние жесткие диски являются выгодным решением, но они сопряжены с некоторыми рисками и ограничениями, которые важно учитывать.

Как и внутренний жесткий диск, внешние жесткие диски сопряжены с риском потери данных. Это может быть вызвано такими атаками, как вредоносное ПО или вирусы, или естественными повреждениями и износом, такими как слишком много солнечного света или тепла, воздействие жидкостей, пыли или помех от других магнитных полей.

Из-за большого количества сложных движущихся частей, которые обеспечивают работу жесткого диска, они весьма уязвимы к повреждениям, особенно если вы берете их с собой куда угодно. Если жесткий диск поврежден, вы все равно сможете восстановить данные, хранящиеся на его пластинах, но это будет сложный и, вероятно, дорогостоящий процесс. В компьютере жесткий диск является одним из самых хрупких аппаратных средств из-за его движущихся частей.

Кроме того, средний жесткий диск не защищен паролем и не зашифрован, поэтому, если он когда-либо будет потерян или украден, ваша личная информация может быть легко скомпрометирована.

Многие внешние жесткие диски также поддерживают только определенные операционные системы или могут поддерживать только одну операционную систему одновременно. У вас может быть MacBook и ПК с Windows, и вы обнаружите, что ваш жесткий диск не может читать и записывать на обоих устройствах, что может быть неприятно, если вы хотите использовать свой жесткий диск для передачи файлов с одного на другое. Многие жесткие диски должны быть переформатированы, что приведет к потере всех данных, прежде чем вы сможете настроить их для записи в другой операционной системе.

Читайте также: