Сектор жесткого диска: Структура жёсткого диска

Что такое сектор диска (кластер)

Этой заметкой я хочу ответить на вопросы «что такое сектор» и «что такое кластер», в чем их отличие и для чего сектора и кластеры нужны.

Для этого нам нужно будет разобраться с принципами хранения информации, и давайте поговорим о самых основах.

Для хранения данных все носители информации имеют специальную разметку. Давайте рассмотрим упрощенную схему подобной разметки на примере жесткого диска.

Жесткий диск имеет несколько «блинов» (дисков), на магнитную поверхность которых и записываются данные (смотрите рисунок выше).

Каждый блин имеет круглую форму и разметка такого блина выглядит так:

Каждый диск разбит на треки (дорожки), а каждая дорожка поделена на сектора. Это конечно, очень упрощенная схема, но она дает представление о том, что такое сектор.

Сектор – это минимальная пронумерованная область диска, в которой могут храниться данные. Обычно размер одного сектора составляет 512 байт.

Для нормальной работы операционной системы на жестком диске создается файловая система. Файловая система использует сектора для хранения файлов, но из-за некоторых ограничений и особенностей различных файловых систем, сектора носителя информации обычно объединяются файловой системой в кластеры. Это означает, что кластер является минимальной областью файловой системы, предназначенной для хранения информации и он может состоять как из одного, так и из нескольких секторов.

Чтобы проиллюстрировать вышесказанное приведу картинку из Википедии:

На этом рисунке замечательным образом продемонстрирована структура диска. Буквой «А» обозначена дорожка, буквой «В» — геометрический сектор диска, а буквой «С» — сектор дорожки. Далее из рисунка видно, что кластер «D» может занимать несколько секторов дорожки (кластер выделен на рисунке зеленым).

В различных файловых системах кластер мог иметь размеры от 512 байт (один сектор) до 64 кбайт (128 секторов). В наиболее популярной в настоящее время файловой системе NTFS размер кластера можно установить от 512 байт, до 4096 байт (8 секторов).

Размером кластера можно управлять в некоторых пределах — его можно задать при форматировании носителя информации.

  • […] различные файловые системы с различным размером кластера, хотя данная возможность уже не актуальна и проще при […]

  • […] время низкоуровневого форматирования создаются треки и сектора, в которых затем будут храниться данные, а также […]

  • Все изложено хорошо. Мне нравиться.

Дорожки и секторы

Подробности
Родительская категория: Накопители на жестких дисках
Категория: Принципы работы накопителей на жестких дисках

Дорожка — это одно “кольцо” данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами.

Количество секторов может быть разным в зависимости от плотности дорожек и типа накопителя. Например, дорожка гибких дисков может содержать от 8 до 36 секторов, а дорожка жесткого диска — от 380 до 700. Секторы, создаваемые с помощью стандартных программ форматирования, имеют емкость 512 байт, но не исключено, что в будущем эта величина изменится. Следует отметить один важный факт: для совместимости со старыми BIOS, независимо от реального количества секторов на дорожке, устройство должно выполнять трансляцию в режим 63 секторов на дорожке, принятый в адресации CHS.

Нумерация секторов на дорожке начинается с единицы, в отличие от головок и цилиндров, отсчет которых ведется с нуля. Например, дискета емкостью 1,44 Мбайт содержит 80 цилиндров, пронумерованных от 0 до 79, в дисководе установлены две головки (с номерами 0 и 1) и каждая дорожка цилиндра разбита на 18 секторов (1–18).

При форматировании диска в начале и конце каждого сектора создаются дополнительные области для записи их номеров, а также прочая служебная информация, благодаря которой контроллер идентифицирует начало и конец сектора. Это позволяет отличать неформатированную и форматированную емкости диска. После форматирования емкость диска уменьшается, и с этим приходится мириться, поскольку для обеспечения нормальной работы накопителя некоторое пространство на диске должно быть зарезервировано для служебной информации. Стоит, однако, отметить, что в новых дисках используется форматирование без идентификатора, т.е. не проставляются отметки начала и конца каждого из секторов. Это позволяет использовать немного больше пространства для хранения реальных данных.

В начале каждого сектора записывается его заголовок (или префикс), по которому определяется начало и номер сектора, а в конце — заключение (или суффикс), в котором находится контрольная сумма, необходимая для проверки целостности данных. В вышеупомянутой системе адресации без идентификаторов начало и конец каждого из секторов определяется на основании импульсов генератора тактовой частоты.

Помимо указанных областей служебной информации, каждый сектор содержит область данных емкостью 512 байт. При низкоуровневом (физическом) форматировании всем байтам данных присваивается некоторое значение, например F6h. Электронные схемы накопителей с большим трудом справляются с кодированием и декодированием некоторых шаблонов, поскольку эти шаблоны используются только при тестировании дисководов, выполняемом производителем в процессе первоначального форматирования. Используя специальные тестовые шаблоны, можно выявить ошибки, которые не обнаруживаются с помощью обычных шаблонов данных.


Примечание!

Форматирование низкого уровня обсуждается далее. Не путайте его с форматированием высокого уровня, которое выполняется с помощью программы FORMAT в DOS и Windows.

Заголовки и суффиксы секторов не зависят от операционной и файловой систем, а также от файлов, хранящихся на жестком диске. Помимо этих элементов, существует множество промежутков в секторах, между секторами на каждой дорожке и между дорожками, но ни один из этих промежутков не может быть использован для записи данных. Промежутки создаются во время форматирования на низком (физическом) уровне, при котором удаляются все записанные данные. На жестком диске промежутки выполняют точно такие же функции, как и на магнитофонной кассете, где они используются для разделения музыкальных записей. Начальные, завершающие и промежуточные пробелы представляют собой именно то пространство, которое определяет разницу между форматной и неформатной емкостью диска. Например, емкость 4-мегабайтовой дискеты (3,5-дюйма) после форматирования “уменьшается” до 2,88 Мбайт (форматная емкость). Дискета емкостью 2 Мбайт (до форматирования) имеет форматную емкость 1,44 Мбайт. Жесткий диск Seagate ST-4038, имеющий неформатную емкость 38 Мбайт, после форматирования “уменьшается” до 32 Мбайт (форматная емкость).

Форматирование низкого уровня современных жестких дисков ATA/IDE и SCSI выполняется еще на заводе, поэтому изготовитель указывает только форматную емкость диска. Тем не менее практически на всех дисках имеется некоторое зарезервированное пространство для управления данными, которые будут записаны на диске. Как видите, утверждать, что размер любого сектора равен 512 байт, — не вполне корректно. На самом деле в каждом секторе можно записать 512 байт данных, но область данных — это только часть сектора. Каждый сектор на диске обычно занимает 571 байт, из которых под данные отводится только 512 байт. В различных накопителях пространство, отводимое под заголовки и суффиксы, может быть разным, но, как правило, сектор имеет размер 571 байт. Как уже говорилось, многие современные диски используют схему разметки без идентификаторов заголовков секторов, что высвобождает дополнительное пространство для данных.

Для наглядности представьте, что секторы — это страницы в книге. На каждой странице содержится текст, но им заполняется не все пространство страницы, так как у нее есть поля (верхнее, нижнее, правое и левое). На полях помещается служебная информация, например названия глав (на диске это соответствует номерам дорожек и цилиндров) и номера страниц (что соответствует номерам секторов). Области на диске, аналогичные полям на странице, создаются во время форматирования диска; тогда же в них записывается и служебная информация. Кроме того, во время форматирования диска области данных каждого сектора заполняются фиктивными значениями. Отформатировав диск, можно записывать информацию в области данных обычным образом. Информация, которая содержится в заголовках и заключениях сектора, не меняется во время обычных операций записи данных. Изменить ее можно, только переформатировав диск.

В таблице в качестве примера приведен формат дорожки и сектора стандартного жесткого диска, имеющего 17 секторов на дорожке. Из таблицы видно, что “полезный” объем дорожки примерно на 15% меньше возможного.

Эти потери характерны для большинства накопителей, но для разных моделей они могут быть различными. Ниже подробно анализируются данные, представленные в табл. 9.2. Послеиндексный интервал нужен для того, чтобы при перемещении головки на новую дорожку переходные процессы (установка) закончились прежде, чем она окажется перед первым сектором. В этом случае его можно начать считывать сразу, не дожидаясь, пока диск совершит дополнительный оборот.

Послеиндексный интервал далеко не всегда обеспечивает время, достаточное для перемещения головки. В этом случае накопитель получает дополнительное время за счет смещения секторов на различных дорожках, которое приводит к задержке появления первого сектора. Другими словами, процесс форматирования низкого уровня приводит к смещению нумерации секторов, в результате чего секторы на соседних дорожках, имеющие одинаковые номера, смещаются друг относительно друга. Например, сектор 9 одной дорожки находится рядом с сектором 8 следующей дорожки, который, в свою очередь, располагается бок о бок с сектором 7 следующей дорожки, и т.д. Оптимальная величина смещения определяется соотношением частоты вращения диска и радиальной скорости головки.


Примечание!

Раньше параметр смещения головки устанавливался пользователем вручную при низкоуровневом форматировании. Сегодня такое форматирования выполняется в промышленных условиях, и эти параметры нельзя изменить.

Идентификатор сектора (ID) состоит из полей записи номеров цилиндра, головки и сектора, а также контрольного поля CRC для проверки точности считывания информации ID.

В большинстве контроллеров седьмой бит поля номера головки используется для маркировки дефектных секторов в процессе форматирования низкого уровня или анализа поверхности. Однако такой метод не является стандартным, и в некоторых устройствах дефектные секторы помечаются иначе. Но, как правило, отметка делается в одном из полей идентификатора сектора. Интервал включения записи следует сразу за байтами CRC; он гарантирует, что информация в следующей области данных будет записана правильно. Кроме того, он служит для завершения анализа контрольной суммы (CRC) идентификатора сектора.

В поле данных можно записать 512 байт информации. За ним располагается еще одно поле CRC для проверки правильности записи данных. В большинстве накопителей размер этого поля составляет 2 байт, но некоторые контроллеры могут работать и с более длинными полями кодов коррекции ошибок (Error Correction Code — ECC). Записанные в этом поле байты кодов коррекции ошибок позволяют при считывании обнаруживать и исправлять некоторые ошибки. Эффективность этой операции зависит от выбранного метода коррекции и особенностей контроллера. Интервал отключения записи позволяет полностью завершить анализ байтов ECC (CRC).

Интервал между записями необходим для того, чтобы застраховать данные следующего сектора от случайного стирания при записи в предыдущий сектор. Это может произойти, если при форматировании диск вращался с частотой, несколько меньшей, чем при последующих операциях записи. При этом сектор, естественно, всякий раз будет немного длиннее. Поэтому, чтобы он не выходил за установленные при форматировании границы, их слегка “растягивают”, вводя упомянутый интервал. Его реальный размер зависит от разности частот вращения диска при форматировании дорожки и при каждом обновлении данных.

Предындексный интервал необходим для компенсации неравномерности вращения диска вдоль всей дорожки. Размер этого интервала зависит от возможных значений частоты вращения диска и сигнала синхронизации при форматировании и записи.

Информация, записываемая в заголовке сектора, имеет огромное значение, поскольку содержит данные о номере цилиндра, головки и сектора. Все эти сведения (за исключением поля данных, байтов CRC и интервала отключения записи) записываются на диск только при форматировании низкого уровня.

  • < Назад
  • Вперёд >

Hard Disk Drive Basics — NTFS.

com

Жесткий диск — это запечатанный блок, содержащий несколько пластин в стеке. Жесткие диски могут быть установлены в горизонтальном или вертикальном положении. В этом описании жесткий диск установлен горизонтально.

Электромагнитные головки чтения/записи расположены над и под каждой пластиной. Когда пластины вращаются, приводные головки перемещаются к центральной поверхности и выдвигаются к краю. Таким образом, приводные головки могут достигать всей поверхности каждого диска.

Создание дорожек

На жестком диске данные хранятся тонкими концентрическими полосами. Головка привода, находясь в одном положении, может читать или записывать кольцевое кольцо или полосу, называемую дорожкой. На 3,5-дюймовом жестком диске может быть более тысячи дорожек. Секции внутри каждой дорожки называются секторами. Сектор — это наименьшая физическая единица хранения на диске, и почти всегда его размер составляет 512 байт (0,5 КБ).

На рисунке ниже показан жесткий диск с двумя пластинами.

Части жесткого диска

Структура старых жестких дисков (т. е. до Windows 95) будет относиться к обозначению цилиндр/головка/сектор. Цилиндр формируется, когда все приводные головки находятся в одном и том же положении на диске.

Гусеницы, уложенные друг на друга, образуют цилиндр. Эта схема постепенно устраняется с современными жесткими дисками. Во всех новых дисках используется коэффициент перевода, чтобы их фактическая аппаратная компоновка выглядела непрерывной, поскольку именно так операционные системы из Windows 95 вперед нравится работать.

Для операционной системы компьютера дорожки имеют скорее логическую, чем физическую структуру, и устанавливаются при низкоуровневом форматировании диска. Дорожки нумеруются, начиная с 0 (крайний край диска) и заканчивая дорожкой с наибольшим номером, обычно 1023 (ближе к центру). Точно так же на жестком диске имеется 1024 цилиндра (пронумерованных от 0 до 1023).

Стопка тарелок вращается с постоянной скоростью. Головка привода, расположенная близко к центру диска, читает с поверхности, которая проходит медленнее, чем поверхность на внешних краях диска.

Чтобы компенсировать эту физическую разницу, дорожки рядом с внешней стороной диска менее плотно заполнены данными, чем дорожки ближе к центру диска. Результатом разной плотности данных является то, что один и тот же объем данных может быть прочитан за один и тот же период времени при любом положении головки привода.

Дисковое пространство заполняется данными по стандартному плану. Одна сторона одной пластины содержит пространство, зарезервированное для информации о позиционировании аппаратных дорожек, и недоступное для операционной системы. Таким образом, дисковая сборка, содержащая две пластины, имеет три стороны, доступные для данных. Данные о позиционировании трека записываются на диск во время сборки на заводе. Контроллер системного диска считывает эти данные, чтобы поместить головки дисков в правильное положение сектора.

Секторы и кластеры

Сектор, являющийся наименьшей физической единицей хранения на диске, почти всегда имеет размер 512 байт, поскольку 512 — это степень числа 2 (2 в степени 9). 3). Единственное нечетное число a секторов, из которых может состоять кластер, равно 1. Это не может быть 5 секторов или четное число, которое не является показателем степени 2. Это не будет 10 секторов, но может быть 8 или 16 секторов.

Они называются кластерами, потому что пространство зарезервировано для содержимого данных. Этот процесс защищает сохраненные данные от перезаписи. Позже, если данные добавляются к файлу и его размер увеличивается до 1600 байт, выделяются еще два кластера, сохраняя весь файл в четырех кластерах.

Если непрерывные кластеры недоступны (кластеры, расположенные рядом друг с другом на диске), вторые два кластера могут быть записаны в другом месте на том же диске или в пределах того же цилиндра или на другом цилиндре — везде, где файловая система находит два доступных сектора.

Файл, хранящийся несмежным образом, считается фрагментированным. Фрагментация может снизить производительность системы, если файловая система должна направлять головки дисков по нескольким разным адресам, чтобы найти все данные в файле, который вы хотите прочитать. Дополнительное время, затрачиваемое головками на перемещение по ряду адресов, приводит к задержке перед получением всего файла.

Размер кластера можно изменить для оптимизации хранения файлов. Больший размер кластера снижает вероятность фрагментации, но увеличивает вероятность того, что в кластере останется неиспользуемое пространство. Использование кластеров размером более одного сектора уменьшает фрагментацию и уменьшает объем дискового пространства, необходимого для хранения информации об используемых и неиспользуемых областях на диске.

Большинство дисков, используемых сегодня в персональных компьютерах, вращаются с постоянной угловой скоростью. Дорожки ближе к внешней стороне диска менее плотно заполнены данными, чем дорожки ближе к центру диска. Таким образом, фиксированный объем данных может быть прочитан за постоянный период времени, даже если скорость поверхности диска выше на дорожках, расположенных дальше от центра диска.

Современные диски резервируют одну сторону одной пластины для информации о расположении дорожек, которая записывается на диск на заводе во время сборки диска.

Недоступно для операционной системы. Контроллер диска использует эту информацию для точной настройки расположения головок, когда головки перемещаются в другое место на диске. Когда сторона содержит информацию о положении дорожки, эта сторона не может использоваться для данных. Таким образом, дисковая сборка, содержащая две пластины, имеет три стороны, доступные для данных.

Что такое жесткий диск (HDD)? Определение из SearchStorage

По

  • Александр С. Гиллис,
    Технический писатель и редактор
  • Сара Уилсон,
    Помощник редактора сайта

Что такое жесткий диск?

Жесткий диск компьютера (HDD) — это энергонезависимое устройство хранения данных. Энергонезависимое относится к устройствам хранения, которые сохраняют сохраненные данные при выключении. Всем компьютерам требуется запоминающее устройство, и жесткие диски — это лишь один из примеров такого типа запоминающих устройств.

Жесткие диски

обычно устанавливаются внутри настольных компьютеров, мобильных устройств, бытовой электроники и корпоративных массивов хранения данных в центрах обработки данных. Они могут хранить операционные системы, программы и другие файлы с помощью магнитных дисков.

В частности, жесткие диски управляют чтением и записью жесткого диска, обеспечивающего хранение данных. Жесткие диски используются в качестве основного или дополнительного устройства хранения данных в компьютере. Они обычно находятся в отсеке для дисков и подключаются к материнской плате с помощью кабеля Advanced Technology Attachment (ATA), Serial ATA, параллельного ATA или кабеля интерфейса малых компьютерных систем (SCSI) и других форматов. Жесткий диск также подключен к блоку питания и может сохранять сохраненные данные при выключенном питании.

Жесткий диск — часто сокращается до жесткий диск — и жесткий диск — это не одно и то же, но они упакованы как единое целое, и любой термин может относиться ко всему устройству.

Зачем компьютерам жесткие диски?

Устройства хранения, такие как жесткие диски, необходимы для установки операционных систем, программ и дополнительных устройств хранения, а также для сохранения документов. Без таких устройств, как жесткие диски, которые могут сохранять данные после выключения, пользователи компьютеров не смогут хранить программы или сохранять файлы или документы на своих компьютерах. Вот почему каждому компьютеру требуется по крайней мере одно запоминающее устройство для постоянного хранения данных, пока это необходимо.

Как работают жесткие диски?

Большинство обычных жестких дисков состоят из нескольких дисковых пластин — круглых дисков из алюминия, стекла или керамики, — которые располагаются вокруг шпинделя внутри герметичной камеры. Диск вращается с помощью двигателя, соединенного со шпинделем. Камера также включает в себя головки чтения/записи, которые магнитно записывают информацию на дорожки и с дорожек на пластинах с помощью магнитной головки. Диски также имеют тонкое магнитное покрытие.

Двигатель вращает пластины со скоростью до 15 000 оборотов в минуту. Когда пластины вращаются, второй двигатель управляет положением головок чтения и записи, которые магнитно записывают и считывают информацию с каждой пластины.

Емкость жесткого диска

Некоторые из наиболее распространенных емкостей накопителей включают следующее:

  • 16 ГБ , 32 ГБ и 64 ГБ. Этот диапазон является одним из самых низких для жесткого диска и обычно встречается в старых и небольших устройствах.
  • 120 ГБ и 256 ГБ. Этот диапазон обычно считается точкой входа для жестких дисков, таких как ноутбуки или компьютеры.
  • 500 ГБ, 1 ТБ и 2 ТБ. Жесткий диск емкостью около 500 ГБ и выше обычно считается достаточным для среднего пользователя. Пользователи, скорее всего, смогут хранить всю свою музыку, фотографии, видео и другие файлы на таком большом пространстве. Людям с играми, которые занимают много места, подойдет от 1 ТБ до 2 ТБ места на жестком диске.
  • Более 2 ТБ. Любое место на жестком диске объемом более 2 ТБ подходит для пользователей, которые работают с файлами высокого разрешения, которым необходимо хранить или размещать большие объемы данных или которые хотят использовать это пространство для резервного копирования и резервирования.

В настоящее время жесткий диск максимальной емкости составляет 20 ТБ. Однако на самом деле на жестком диске меньше места, чем заявлено, поскольку операционная система, структуры файловой системы и некоторые процедуры резервирования данных используют часть этого пространства.

Компоненты жесткого диска и форм-факторы

Компоненты жесткого диска

включают шпиндель, пластину диска, привод, рычаг привода и головку чтения/записи. Несмотря на то, что этот термин может относиться к устройству в целом, термин жесткий диск представляет собой набор сложенных друг в друга дисков, другими словами, часть жесткого диска, которая хранит и обеспечивает доступ к данным на электромагнитно заряженной поверхности.

Форм-фактор жесткого диска относится к физическому размеру или геометрии устройства хранения данных. Форм-факторы жестких дисков соответствуют набору отраслевых стандартов, которые определяют их длину, ширину и высоту, а также положение и ориентацию разъема интерфейса хоста. Наличие стандартного для отрасли форм-фактора помогает определить общую совместимость с различными вычислительными устройствами.

Наиболее распространенными форм-факторами жестких дисков в корпоративных системах являются 2,5-дюймовые и 3,5-дюймовые, также известные как малый форм-фактор (SFF) и большой форм-фактор (LFF). 2,5-дюймовые и 3,5-дюймовые размеры представляют собой приблизительный диаметр диска в корпусах дисков.

Хотя существуют и другие форм-факторы, к 2009 году производители прекратили разработку продуктов с форм-факторами 1,3 дюйма, 1 дюйм и 0,85 дюйма. Падение цен на флэш-память сделало эти другие форм-факторы почти устаревшими. Также важно отметить, что хотя номинальные размеры указаны в дюймах, фактические размеры указаны в миллиметрах.

Многие твердотельные накопители (SSD) также предназначены для форм-фактора HDD. Твердотельные накопители, которые помещаются в те же слоты, что и жесткие диски, обычно используют интерфейс SATA или последовательный интерфейс SCSI (SAS) для передачи данных в хост-систему и из нее.

Что такое внешние жесткие диски?

Большинство жестких дисков находятся внутри компьютера и работают, как указано выше. Однако физические лица также могут приобрести внешние жесткие диски. Внешние жесткие диски можно использовать для увеличения объема памяти компьютера или в качестве портативного устройства для резервного копирования данных. Внешние накопители подключаются к компьютеру или устройству через такие интерфейсы, как USB 2.0, USB-C или с внешним SATA (eSATA). Внешние жесткие диски также могут иметь более низкую скорость передачи данных по сравнению с внутренними жесткими дисками.

Основным преимуществом внешнего жесткого диска, помимо возможности расширить объем памяти устройства, является его портативность. Пользователи могут хранить данные с нескольких устройств и физически брать их с собой, куда бы они ни направлялись.

Распространенные ошибки жесткого диска

Жесткие диски могут выйти из строя по разным причинам. Однако неудачи обычно делятся на следующие шесть широких категорий.

  • Электрическая неисправность возникает, когда, например, скачок напряжения повреждает электронную схему жесткого диска, что приводит к выходу из строя головки чтения/записи или печатной платы. Если жесткий диск включается, но не может читать и записывать данные или загружаться, вполне вероятно, что в одном или нескольких его компонентах произошел электрический сбой.
  • Механический отказ может быть вызван износом, а также сильным ударом, например падением. Среди прочего, это может привести к тому, что головка диска чтения/записи ударится о вращающийся диск, что приведет к необратимому физическому повреждению.
  • Логический сбой возникает, когда программное обеспечение жесткого диска скомпрометировано или перестает работать должным образом. Всевозможные повреждения данных могут привести к логическому сбою. Сюда входят поврежденные файлы, вредоносное ПО и вирусы, неправильное закрытие приложения или выключение компьютера, человеческий фактор или случайное удаление файлов, критически важных для работы жесткого диска.
  • Сбой поврежденного сектора может произойти, когда магнитный носитель на вращающемся диске жесткого диска смещен, в результате чего определенная область диска становится недоступной. Плохие сектора распространены и часто ограничены, когда они возникают. Однако со временем количество сбойных секторов может увеличиваться, что в конечном итоге приводит к сбою системы, недоступным файлам или зависанию или притормаживанию работы жесткого диска.
  • Сбой микропрограммы происходит, когда программное обеспечение, выполняющее задачи обслуживания диска и обеспечивающее связь жесткого диска с компьютером, повреждено или перестает работать должным образом. Этот тип сбоя может привести к зависанию диска во время загрузки или к тому, что компьютер, к которому подключен жесткий диск, не распознает или ошибочно идентифицирует его.
  • Также могут возникать множественные неизвестные сбои , которые накапливаются с течением времени. Например, электрическая проблема может привести к механическому отказу, такому как поломка головки чтения/записи. Это также может привести к логическому сбою, в результате чего на пластинах жесткого диска появится несколько поврежденных секторов.

История жестких дисков

Жесткий диск был создан в 1953 году инженерами IBM, которые хотели найти способ обеспечить произвольный доступ к большим объемам данных по низкой цене. Разработанные диски были размером с холодильник, могли хранить 3,75 МБ данных и начали поставляться в 1956. Memorex, Seagate Technology и Western Digital были другими первыми поставщиками технологии жестких дисков.

Размер форм-фактора жесткого диска продолжает уменьшаться по мере развития технологии. К середине 1980-х годов были введены форм-факторы 3,5 и 2,5 дюйма, которые стали стандартом для персональных компьютеров.

Плотность жесткого диска увеличилась с тех пор, как технология была впервые разработана. Первые жесткие диски могли хранить мегабайты данных, а сегодня их емкость достигает терабайтов. Hitachi Global Storage Technologies ( HGST ) теперь бренд Western Digital выпустил первые жесткие диски емкостью 1 ТБ в 2007 году. Жесткий диск ТБ. А в 2021 году Western Digital представила два жестких диска емкостью 20 ТБ.

Эволюция жестких дисков и развитие технологий

В 2013 году компания Seagate Technology объявила о выпуске жестких дисков, в которых используется технология черепичной магнитной записи (SMR). SMR увеличивает плотность хранения на жестких дисках, располагая магнитные дорожки на каждом диске слоями, а не располагая их параллельно друг другу. Обозначается как черепица , потому что дорожки перекрываются, как черепица на крыше.

На этом изображении показано, как выглядит жесткий диск с его внутренними компонентами.

HGST анонсировала первый жесткий диск, заполненный гелием, в 2012 году. Гелий менее плотный, холоднее и легче воздуха, потребляет меньше энергии, увеличивает плотность дисков и повышает производительность по сравнению с традиционными жесткими дисками. В 2016 году Seagate анонсировала собственный гелиевый жесткий диск емкостью 10 ТБ.

В 2021 году производитель накопителей Western Digital представил два жестких диска емкостью 20 ТБ — Ultrastar DC HC560 и жесткий диск WD Gold Enterprise Class SATA HDD. В настоящее время 20 ТБ — это самый большой доступный размер жесткого диска. Оба жестких диска имеют стандартный 3,5-дюймовый форм-фактор, но имеют разные варианты использования. Ultrastar DC HC560 предназначен для поставщиков облачных хранилищ, а также для бизнес-серверов, систем безопасности и сетевых устройств хранения. Жесткий диск WD Gold предназначен для предприятий, работающих с большими приложениями.

Жесткие диски и твердотельные накопители

Основной альтернативой жестким дискам являются твердотельные накопители.

В отличие от жестких дисков твердотельные накопители не содержат движущихся частей. Твердотельные накопители также имеют меньшую задержку, чем жесткие диски, и поэтому их часто предпочитают для хранения важных данных, к которым требуется быстрый доступ, а также для приложений с высоким спросом на ввод/вывод. Твердотельные накопители сконфигурированы для обеспечения высокой скорости чтения/записи для последовательных и случайных запросов данных. Кроме того, твердотельные накопители не хранят данные на магнитных носителях, поэтому скорость чтения остается стабильной независимо от того, где на диске хранятся данные. SSD также имеют более быстрое время загрузки.

Именно из-за этих преимуществ, а также из-за того, что жесткие диски более уязвимы к поломкам, в настоящее время жесткие диски начинают заменяться твердотельными накопителями.

Однако, несмотря на то, что большинство пользователей ПК стали отдавать предпочтение твердотельным накопителям, жесткие диски — наряду с магнитной лентой — по-прежнему часто используются для хранения больших объемов данных. Отчасти это связано с тем, что твердотельные накопители дороже жестких дисков с точки зрения цены за гигабайт. Многие корпоративные массивы хранения поставляются с жесткими дисками и твердотельными накопителями, что снижает затраты и обеспечивает более высокую производительность. Твердотельные накопители также имеют установленный ожидаемый срок службы с конечным числом циклов записи, прежде чем производительность снизится. По сравнению с жестким диском твердотельные накопители выходят из строя быстрее.

Узнайте больше о и сравнении твердотельных накопителей с жесткими дисками в этой статье.

Последнее обновление: декабрь 2021 г.


Продолжить чтение О жестком диске (HDD)

  • Western Digital OptiNAND увеличивает емкость и производительность жесткого диска
  • Гипермасштабный переход на 18 ТБ, жесткие диски SMR лидируют в 21-м тренде жестких дисков
  • Seagate представляет технологию жестких дисков NVMe на OCP
  • Флэш-накопители QLC — горячая тенденция 21 года, давящая на жесткие диски по цене
  • Архитектуры на основе флэш-памяти поддерживают рабочие нагрузки нового поколения в реальном времени

Копать глубже на первичных устройствах хранения

  • Western Digital поднимает планку с жесткими дисками емкостью 26 ТБ и новыми твердотельными накопителями

    Автор: Адам Армстронг

  • SSD, SSHD или HDD: какой из них лучше?

    Автор: Брайен Поузи

  • Жесткие диски останутся доминирующими носителями информации в 2022 году

    Автор: Адам Армстронг

  • Western Digital OptiNAND увеличивает емкость и производительность жесткого диска

    Автор: Джонни Ю

SearchDisasterRecovery


  • Почему план аварийного восстановления HIPAA имеет решающее значение

    Аварийное восстановление — сложная операция с высокими ставками. Когда в дело вступают медицинские данные, хороший план аварийного восстановления становится еще более важным…


  • Используйте ISO 22320:2018 для подготовки плана управления инцидентами

    Управление инцидентами имеет решающее значение для обеспечения того, чтобы предприятия могли справляться с незапланированными разрушительными событиями. Узнайте, как ISO:22320:…


  • Новый генеральный директор Everbridge вступает в должность в критический момент

    Новый генеральный директор Everbridge Дэвид Вагнер подробно описывает сферы своей деятельности в компании. Инвестор Ancora предположил, что частный капитал …

SearchDataBackup


  • Основатель Cohesity и новый генеральный директор обсуждают стратегию управления данными

    Нынешний и бывший руководители Cohesity стремятся вывести компанию на «новый уровень». В планы входит объединение резервного копирования и безопасности в .

Читайте также: