Блок питания для пк маленький: Покупайте современные мини itx постоянного тока бп для мощных вычислений
Содержание
Маленький внешний блок питания для компьютера и микросервера формата Mini-ITX
Дома много лет в качестве «файлопомойки» живёт микросервер формата Mini-ITX на Atom и Nvidia ION размером с обувную коробку. Его задача — крутить двухтерабайтные винты, качать торренты, быть принтсервером, играть музыку по S/PDIF на AV-ресивер и кино — на телевизор по HDMI.
Под новый год блок питания сервера сдался и просто перестал включаться. Стандартные рецепты — перепайка вспухших электролитов и т.п. — не возымели действия, дежурные 5V есть, но при включении блок выдаёт 12V на полсекунды и сразу циклически уходит в защиту.
К сожалению, в компьютере был установлен БП нестандартного форм-фактора, InWin IP-AD160-2 — во-первых, замену ему уже не сыскать, а во-вторых — ремонт из-за сверхплотной компоновки потребовал бы выпаивания половины деталей. С такими вводными пришлось искать нестандартные решения.
Тут я вспомнил, что у меня дома завалялся лишний «брендовый» блок питания для ноутбука Lenovo 20V/4. 5A, а на Ali я раньше видел в ассортименте Pico-ATX адаптеры, понижающие входное постоянное напряжение для нужных компьютеру 12+5 вольт.
Если бы у меня был мощный AC/DC «импульсник» на 12 вольт, можно было бы обойтись вдвое более дешёвым Pico ATX, но мне пришлось взять более дорогой экземпляр, допускающий на входе от 17 до 24 вольт, с паспортной мощностью до 180 Вт.
Характеристики с сайта продавца
Заявлена защита от перегрузки и от КЗ.
Заказ приехал шустро, за 9 дней от двери до двери. Упаковка — картонная коробка с двумя отделениями, очевидно, специально разработанная под товар:
Упаковка
Как на фото у продавца, БП был снабжён комплектом разъёмов:
БП на нижней грани имеет массивную горбатую пластину толщиной 2мм, прижатую к транзисторам через скорее всего не-теплопроводящий клей. Соответственно, снять её без повреждения и заложить проверенную термопасту не выйдет. На контакте «-12 вольт» обнаружилось маленькое ферритовое кольцо. Пайка — весьма достойная, дорожки широкие, текстолит толстый и качественный, флюс отмыт, придраться можно разве что к кривовато установленным массивным резисторам.
Горб
Феррит
Поскольку мне нужно было получить разъёмы для питания 4 SATA-дисков, появился повод разрезать «косу» с проводами и оценить толщину проводников. Она не порадовала — см. на фото слева в сравнении с припоем диаметром 1мм и нормальными стальными проводами справа:
Материал — омеднённая сталь, лудится отвратительно, паяется — отвратительно. В какой-то момент плюнул и срастил провода, обжав их клещами в гильзы НШВИ.
Поскольку я не очень доверяю штекерным соединениям под высокий постоянный ток, на вход БП припаял прямо на плату медный провод сечением 2мм, а вместо штатного разъёма поставил «родное» гнездо Lenovo, также с АлиЭкспресс. Это позволило не кромсать провод ноутбучного БП:
Блок отлично уместился на штатные крепёжные отверстия, но потребовались проставки по высоте из-за пластины теплоотвода.
С минимальной нагрузкой (LED-лампа на линии 12 вольт, 2.5» HDD на линии 5 вольт) блок питания выдаёт 12,23 и 5,19В, соответственно. В дежурном режиме блок потребляет на входе 0,19А. Осциллограф у меня только «игрушечный» DSO138, так что пульсации померять нечем, к сожалению.
Ставим материнскую плату на место, предварительно перепаяв все электролиты на новенькие Jamicron, собираем компьютер и начинаем тесты.
Комплектация ПК — три HDD (WD Green на 1,5 и 2 терабайта, ноутбучный Scorpio на 250Gb) и SSD OCZ Vertex. Видео — интегрированное Nvidia ION. Процессор — Atom:
Под полной нагрузкой — все HDD крутятся, запущена Windows — потребление составляет около 2,15А:
Сходные цифры даёт ИБП, также питающий роутер — потребление гуляет в диапазоне от 18 до 28Вт в пике:
За счёт того, что преобразование переменного тока в постоянный теперь возложено на внешний ноутбучный БП сам компьютер довольно холодный. Температура самого БП — 44 градуса. Надо будет попробовать совсем отключить корпусной 80мм вентилятор и посмотреть, что из этого выйдет, возможно, что пассивной вытяжки в шкафу будет достаточно.
Температура
и это несмотря на очень плотную «набивку» корпуса начинкой:
В качестве финального штриха добавляем заглушку на заднюю панель компьютера в то место, где раньше был разъём для кабеля 220 вольт. Для этого на скору руку набрасываем модель в OpenSCAD и печатаем из ABS-пластика.
Покупкой очень доволен — она решила мою проблему с заменой нестандартного БП, позволила вынести лишний источник тепла за пределы корпуса и избавила меня от шума одного из кулеров, работает круглосуточно, но электричества ест меньше, чем на три рубля в день. К покупке рекомендую.
P.S. Продавец вложил бумажный купон на $2:
Как устроен блок питания, который работает в каждом системнике / Хабр
Блок питания извлечён из корпуса. Пучок проводов слева подключается к компьютеру. Большой компонент посередине типа трансформатора — это фильтрующий индуктор. Кликабельно, как и все фотографии в статье
Вы когда-нибудь задумывались, что находится внутри блока питания (БП) вашего компьютера? Задача БП — преобразовать питание из сети (120 или 240 В переменного тока, AC) в стабильное питание постоянного, то есть однонаправленного тока (DC), который нужен вашему компьютеру. БП должен быть компактным и дешёвым, при этом эффективно и безопасно преобразовывать ток. Для этих целей при изготовлении используются различные методы, а сами БП внутри устроены гораздо сложнее, чем вы думаете.
В этой статье мы разберём блок стандарта ATX и объясним, как он работает1.
Как и в большинстве современных БП, в нашем используется конструкция, известная как «импульсный блок питания» (ИБП). Это сейчас они очень дёшевы, но так было не всегда. В 1950-е годы сложные и дорогие ИБП использовались разве что в ракетах и космических спутниках с критическими требованиями к размеру и весу. Однако к началу 1970-х новые высоковольтные транзисторы и другие технологические усовершенствования значительно удешевили ИБП, так что их стали широко использовать в компьютерах. Сегодня вы можете за несколько долларов купить зарядное устройство для телефона с ИБП внутри.
Наш ИБП формата ATX упакован в металлический корпус размером с кирпич, из которого выходит множество разноцветных кабелей. Внутри корпуса мы видим плотно упакованные компоненты. Инженеры-конструкторы явно были озабочены проблемой компактности устройства. Многие компоненты накрыты радиаторами. Они охлаждают силовые полупроводники. То же самое для всего БП делает встроенный вентилятор. На КДПВ он справа.
Начнём с краткого обзора, как работает ИБП, а затем подробно опишем компоненты. Своеобразный «конвейер» на фотографии организован справа налево. Справа ИБП получает переменный ток. Входной переменный ток преобразуется в высоковольтный постоянный ток с помощью нескольких крупных фильтрующих компонентов. Этот постоянный ток включается и выключается тысячи раз в секунду для генерации импульсов, которые подаются в трансформатор. Тот преобразует высоковольтные импульсы в сильноточные низковольтные. Эти импульсы преобразуются в постоянный ток и фильтруются, чтобы обеспечить хорошее, чистое питание. Оно подаётся на материнскую плату, накопители и дисководы через кабели на фотографии слева.
Хотя процесс может показаться чрезмерно сложным, но большинство бытовой электроники от мобильника до телевизора на самом деле питаются через ИБП. Высокочастотный ток позволяет сделать маленький, лёгкий трансформатор. Кроме того, импульсные БП очень эффективны. Импульсы настраиваются таким образом, чтобы обеспечить только необходимую мощность, а не превращать избыточную мощность в отработанное тепло, как в линейном БП.
Первым делом входной переменный ток проходит через цепь входного фильтра, которая фильтрует электрический шум, то есть беспорядочные изменения электрического тока, ухудшающие качество сигнала.
Фильтр ниже состоит из индукторов (тороидальных катушек) и конденсаторов. Квадратные серые конденсаторы — специальные компоненты класса X для безопасного подключения к линиям переменного тока.
Компоненты входного фильтра
Переменный ток с частотой 60 герц в сети меняет своё направление 60 раз в секунду (AC), но компьютеру нужен постоянный ток в одном направлении (DC). Полномостовой выпрямитель на фотографии ниже преобразует переменный ток в постоянный. Выходы постоянного тока на выпрямителе отмечены знаками ?
и +
, а переменный ток входит через два центральных контакта, которые постоянно меняют свою полярность. Внутри выпрямителя — четыре диода. Диод позволяет току проходить в одном направлении и блокирует его в другом направлении, поэтому в результате переменный ток преобразуется в постоянный ток, протекающий в нужном направлении.
На мостовом выпрямителе видна маркировка GBU606. Цепь фильтра находится слева от выпрямителя. Большой чёрный конденсатор справа — один из удвоителей напряжения. Маленький жёлтый конденсатор — это специальный керамический Y-конденсатор, который защищает от всплесков напряжения
Ниже — две схемы, как работает мостовой выпрямитель. На первой схеме у верхнего входа переменного тока положительная полярность. Диоды пропускают поток на выход DC. На второй схеме входы переменного тока поменяли полярность, как это происходит постоянно в AC. Однако конфигурация диодов гарантирует, что выходной ток остаётся неизменным (плюс всегда сверху). Конденсаторы сглаживают выход.
На двух схемах показан поток тока при колебаниях входного сигнала AC. Четыре диода заставляют ток течь в направлении по стрелке
Современные БП принимают «универсальное» входное напряжение от 85 до 264 вольт переменного тока, поэтому могут использоваться в разных странах независимо от напряжения в местной сети. Однако схема этого старого БП не могла справиться с таким широким диапазоном. Поэтому предусмотрен переключатель для выбора 115 или 230 В.
Переключатель 115/230 В
Переключатель использует умную схему с удвоителем напряжения. Идея в том, что при закрытом переключателе (на 115 В) вход AC обходит два нижних диода в мостовом выпрямителе, а вместо этого подключается непосредственно к двум конденсаторам. Когда «плюс» на верхнем входе AC, полное напряжение получает верхний конденсатор. А когда «плюс» снизу, то нижний. Поскольку выход DC идёт с обоих конденсаторов, на выходе всегда получается двойное напряжение. Дело в том, что остальная часть БП получает одинаковое напряжение независимо от того, на входе 115 или 230 В, что упрощает его конструкцию. Недостаток удвоителя в том, что пользователь обязан установить переключатель в правильное положение, иначе рискует повредить БП, а для самого БП требуются два больших конденсатора. Поэтому в современных БП удвоитель напряжения вышел из моды.
Схема удвоителя напряжения. Каждый конденсатор получает полный вольтаж, поэтому на выходе DC двойное напряжение. Серые диоды не используются в работе удвоителя
В целях безопасности высоковольтные и низковольтные компоненты разделены механически и электрически, см. фотографию ниже. На основной стороне находятся все цепи, которые подключаются к сети AC. На вторичной стороне — низковольтные цепи. Две стороны разделены «пограничной изоляцией», которая отмечена зелёным пунктиром на фотографии. Через границу не проходит никаких электрических соединений. Трансформаторы пропускают энергию через эту границу через магнитные поля без прямого электрического соединения. Сигналы обратной связи передаются на основную сторону с помощью оптоизоляторов, то есть световыми импульсами. Это разделение является ключевым фактором в безопасной конструкции: прямое электрическое соединение между линией AC и выходом БП создаёт опасность удара электрическим током.
Источник питания с маркировкой основных элементов. Радиаторы, конденсаторы, плата управления и выходные кабели удалены ради лучшего обзора (SB означает источник резервного питания, standby supply)
К этому моменту входной переменный ток преобразован в высоковольтный постоянный ток около 320 В2. Постоянный ток нарезается на импульсы переключающим (импульсным) транзистором (switching transistor
на схеме выше). Это силовой МОП-транзистор (MOSFET)3. Поскольку во время использования он нагревается, то установлен на большом радиаторе. Импульсы подаются в главный трансформатор, который в некотором смысле является сердцем БП.
Трансформатор состоит из нескольких катушек проволоки, намотанных на намагничиваемый сердечник. Высоковольтные импульсы, поступающие в первичную обмотку трансформатора, создают магнитное поле. Сердечник направляет это магнитное поле на другие, вторичные обмотки, создавая в них напряжение. Так ИБП безопасно вырабатывает выходной ток: между двумя сторонами трансформатора нет электрического соединения, только соединение через магнитное поле. Другим важным аспектом является то, что в первичной обмотке много оборотов проволоки вокруг сердечника, а на вторичных контурах гораздо меньше. В результате получается понижающий трансформатор: выходное напряжение намного меньше входного, но при гораздо большем вольтаже.
Переключающий транзистор3 управляется интегральной схемой под названием «ШИМ-контроллер режима тока UC3842B». Этот чип можно считать мозгом БП. Он генерирует импульсы на высокой частоте 250 килогерц. Ширина каждого импульса регулируется для обеспечения необходимого выходного напряжения: если напряжение начинает падать, чип производит более широкие импульсы, чтобы пропускать больше энергии через трансформатор4.
Теперь можно посмотреть на вторую, низковольтную часть БП. Вторичная схема производит четыре выходных напряжения: 5, 12, ?12 и 3,3 вольта. Для каждого выходного напряжения отдельная обмотка трансформатора и отдельная схема для получения этого тока. Силовые диоды (ниже) преобразуют выходы трансформатора в постоянный ток. Затем индукторы и конденсаторы фильтруют выход от всплесков напряжения. БП должен регулировать выходное напряжение, чтобы поддерживать его на должном уровне даже при увеличении или уменьшении нагрузки. Интересно, что в БП используется несколько различных методов регулирования.
Крупным планом показаны выходные диоды. Слева вертикально установлены цилиндрические диоды. В центре — пары прямоугольных силовых диодов Шоттки, в каждом корпусе по два диода. Эти диоды прикреплены к радиатору для охлаждения. Справа обратите внимание на два медных провода в форме скоб. Они используются в качестве резисторов для измерения тока
Основными являются выходы 5 и 12 В. Они регулируются одной микросхемой контроллера на основной стороне. Если напряжение слишком низкое, микросхема увеличивает ширину импульсов, пропуская больше мощности через трансформатор и увеличивая напряжение на вторичной стороне БП. А если напряжение слишком высокое, чип уменьшает ширину импульса. Примечание: одна и та же схема обратной связи управляет выходами на 5 и 12 В, поэтому нагрузка на одном выходе может изменять напряжение на другом. В более качественных БП два выхода регулируются по отдельности5.
Нижняя сторона печатной платы. Обратите внимание на большое расстояние между цепями основной и вторичной сторон БП. Также обратите внимание, какие широкие металлические дорожки на основной стороне БП для тока высокого напряжения и какие тонкие дорожки для схем управления
Вы можете задать вопрос, как микросхема контроллера на основной стороне получает обратную связь об уровнях напряжения на вторичной стороне, поскольку между ними нет электрического соединения (на фотографии виден широкий зазор). Трюк в использовании хитроумной микросхемы под названием оптоизолятор. Внутри чипа на одной стороне чипа инфракрасный светодиод, на другой светочувствительный фототранзистор. Сигнал обратной связи подаётся на LED и детектируется фототранзистором на другой стороне. Таким образом оптоизолятор обеспечивает мост между вторичной и первичной сторонами, передавая информацию светом, а не электричеством6.
Источник питания также обеспечивает отрицательное выходное напряжение (?12 В). Это напряжение в основном устарело, но использовалось для питания последовательных портов и слотов PCI. Регулирование питания ?12 В кардинально отличается от регулирования +5 и +12 В. Выход ?12 В управляется стабилитроном (диодом Зенера) — это специальный тип диода, который блокирует обратный ток до определённого уровня напряжения, а затем начинает проводить его. Избыточное напряжение рассеивается в виде тепла через силовой резистор (розовый) под управлением транзистора и стабилитрона (поскольку этот подход расходует энергию впустую, современные высокоэффективные БП не используют такой метод регулирования).
Питание ?12 В регулируется крошечным стабилитроном ZD6 длиной около 3,6 мм на нижней стороне печатной платы. Соответствующий силовой резистор и транзистор A1015 находятся на верхней стороне платы
Пожалуй, наиболее интересной схемой регулирования является выход 3,3 В, который регулируется магнитным усилителем. Магнитный усилитель — это индуктор с особыми магнитными свойствами, которые заставляют его работать как ключ (переключатель). Когда ток подаётся в индуктор магнитного усилителя, то сначала он почти полностью блокирует ток, поскольку индуктор намагничивается и магнитное поле увеличивается. Когда индуктор достигает полной намагниченности (то есть насыщается), его поведение внезапно меняется — и индуктор позволяет частицам течь беспрепятственно. Магнитный усилитель в БП получает импульсы от трансформатора. Индуктор блокирует переменную часть импульса. Выход 3,3 В регулируется изменением ширины импульса7.
Магнитный усилитель представляет собой кольцо из ферритового материала с особыми магнитными свойствами. Вокруг кольца намотано несколько витков проволоки
В блоке питания есть небольшая плата, на которой размещена схема управления. Эта плата сравнивает напряжение с эталонным, чтобы генерировать сигналы обратной связи. Она отслеживает вольтаж также для того, чтобы генерировать сигнал «питание в норме» (power good). Схема установлена на отдельной перпендикулярной плате, поэтому не занимает много места в БП.
Основные компоненты установлены на верхней стороне платы со сквозными отверстиями, а нижняя сторона покрыта крошечными SMD-компонентами, которые нанесены путём поверхностного монтажа. Обратите внимание на резисторы с нулевым сопротивлением в качестве перемычек
В БП есть ещё вторая цепь — для резервного питания9. Даже когда компьютер формально «выключен», пятивольтовый источник резервного питания обеспечивает ему мощность 10 Вт для функций, которые продолжают работать: часы реального времени, функция пробуждения по локальной сети и др. Цепь резервного питания является почти независимым БП: она использует отдельную управляющую микросхему, отдельный трансформатор и отдельные компоненты на вторичной стороне DC, но те же самые компоненты на основной стороне AC. Эта система гораздо меньшей мощности, поэтому в цепи трансформатор меньшего размера.
Чёрно-жёлтые трансформаторы: трансформатор для резервного питания находится слева, а основной трансформатор — справа. Перед ним установлена микросхема для управления резервным питанием. Большой цилиндрический конденсатор справа — компонент удвоителя напряжения. Белые капли — это силикон, который изолирует компоненты и удерживает их на месте
Блок питания ATX сложно устроен внутри, с множеством компонентов, от массивных индукторов и конденсаторов до крошечных компонентов поверхностного монтажа10. Однако эта сложность позволяет выпускать эффективные, маленькие и безопасные БП. Для сравнения, я когда-то писал о блоке питания 1940-х годов, который выдавал всего 85 ватт мощности, но был размером с чемодан, весил 50 кг и стоил сумасшедшие деньги. В наше время с продвинутыми полупроводниками делают гораздо более мощные БП дешевле 50 долларов, и такое устройство поместится у вас в руке.
Блок питания REC-30 для телетайпа Model 19 (ВМФ США) 1940-х годов
Я уже писал о БП, включая историю блоков питания в IEEE Spectrum. Вам также могут понравиться детальные разборы зарядного устройства Macbook и зарядного устройства iPhone.
1 Intel представила стандарт ATX для персональных компьютеров в 1995 году. Стандарт ATX (с некоторыми обновлениями) по-прежнему определяет конфигурацию материнской платы, корпуса и блока питания большинства настольных компьютеров. Здесь мы изучаем блок питания 2005 года, а современные БП более продвинутые и эффективные. Основные принципы те же, но есть некоторые изменения. Например, вместо магнитных усилителей почти везде используют преобразователи DC/DC.
Этикетка на блоке питания
На этикетке БП указано, что он изготовлен компанией Bestec для настольного компьютера Hewlett-Packard Dx5150. Этот БП слегка не соответствует формату ATX, он более вытянут в длину. [вернуться]
2 Вы можете задать вопрос, почему AC напряжением 230 В преобразуется в постоянный ток 320 В. Причина в том, что напряжение переменного тока обычно измеряется как среднеквадратичное, которое в каком-то смысле усредняет изменяющуюся форму волны. По факту в 230-вольтовом сигнале AC есть пики до 320 вольт. Конденсаторы БП заряжаются через диоды до пикового напряжения, поэтому постоянный ток составляет примерно 320 вольт (хотя немного провисает в течение цикла). [вернуться]
3 Силовой транзистор представляет собой силовой МОП-транзистор FQA9N90C. Он выдерживает 9 ампер и 900 вольт. [вернуться]
4 Интегральная схема питается от отдельной обмотки на трансформаторе, которая выдаёт 34 вольта для её работы. Налицо проблема курицы и яйца: управляющая микросхема создаёт импульсы для трансформатора, но трансформатор питает управляющую микросхему. Решение — специальная цепь запуска с резистором 100 kΩ между микросхемой и высоковольтным током. Она обеспечивает небольшой ток для запуска микросхемы. Как только чип начинает отправлять импульсы на трансформатор, то питается уже от него. [вернуться]
5 Метод использования одного контура регулирования для двух выходов называется перекрёстным регулированием. Если нагрузка на одном выходе намного выше другого, напряжения могут отклоняться от своих значений. Поэтому во многих БП есть минимальные требования к нагрузке на каждом выходе. Более продвинутые БП используют DC/DC преобразователи для всех выходов, чтобы контролировать точность напряжения. Дополнительные сведения о перекрёстном регулировании см. в этих двух презентациях. Один из обсуждаемых методов — многоуровневая укладка выходных обмоток, как в нашем БП. В частности, 12-вольтовый выход реализован в виде 7-вольтового выхода поверх 5-вольтового выхода, что даёт 12 вольт. При такой конфигурации ошибка 10% (например) в 12-вольтовой цепи будет составлять всего 0,7 В, а не 1,2 В. [вернуться]
6 Оптоизоляторы представляют собой компоненты PC817, которые обеспечивают 5000 вольт изоляции между сторонами БП (то есть между высокой и низкой сторонами). Обратите внимание на прорезь в печатной плате под оптоизоляторами. Это дополнительная мера безопасности: она гарантирует, что ток высокого напряжения не пройдёт между двумя сторонами оптоизолятора вдоль поверхности печатной платы, например, при наличии загрязнения или конденсата (в частности, прорезь увеличивает расстояние утечки). [вернуться]
7 Ширина импульса через магнитный усилитель устанавливается простой схемой управления. В обратной части каждого импульса индуктор частично размагничивается. Схема управления регулирует напряжение размагничивания. Более высокий вольтаж усиливает размагничивание. Тогда индуктору требуется больше времени для повторного намагничивания, и, таким образом, он дольше блокирует входной импульс. При более коротком импульсе в цепи выходное напряжение уменьшается. И наоборот, более низкое напряжение размагничивания приводит к меньшему размагничиванию, поэтому входной импульс блокируется не так долго. В итоге выходное напряжение регулируется изменением напряжения размагничивания. Обратите внимание, что ширина импульса в магнитном усилителе регулируется управляющей микросхемой. Магнитный усилитель сокращает эти импульсы по мере необходимости при регулировании выходного напряжения 3,3 В. [вернуться]
8 Плата управления содержит несколько микросхем, включая операционный усилитель LM358NA, чип супервизора/сброса TPS3510P, четырёхканальный дифференциальный компаратор LM339N и прецизионный эталон AZ431. Чип супервизора интересный — он специально разработан для БП и контролирует выходное напряжение, чтобы оно было не слишком высоким и не слишком низким. Прецизионный эталон AZ431 — это вариант эталонного чипа TL431, который часто используется в БП для обеспечения опорного (контрольного) напряжения. Я уже писал о TL431. [вернуться]
9 Источник резервного питания использует другую конфигурацию — обратноходовой трансформатор. Здесь установлена управляющая микросхема A6151 с переключающим транзистором, что упрощает конструкцию.
Схема БП с использованием A6151. Она взята из справочника, поэтому не идентична схеме нашего БП, хотя близка к ней
[вернуться]
10 Если хотите изучить подробные схемы различных БП формата ATX, рекомендую сайт Дэна Мельника. Удивительно, сколько существует реализаций БП: различные топологии (полумостовые или прямые), наличие или отсутствие преобразования коэффициента мощности (PFC), разнообразные системы управления, регулирования и мониторинга. Наш БП довольно похож на БП с прямой топологией без PFC, внизу той странички на сайте Дэна. [вернуться]
Благодаря этому крошечному блоку питания даже малогабаритные устройства кажутся огромными
При покупке по ссылкам на нашем сайте мы можем получать комиссионные. Вот как это работает.
(Изображение предоставлено HDPlex)
Этот блок питания совсем крошечный. Вы действительно можете запустить игровой компьютер от этого крошечного блока питания; он поставляется со всеми кабелями и разъемами, необходимыми для загрузки обычной материнской платы, процессора, графического процессора и диска SATA в форм-факторе, не намного большем, чем iPhone.
Блок питания HDPlex 250 Вт GaN ATX имеет размеры всего 170 x 50 x 25 мм и является полностью пассивным блоком — без сомнения, почему он всплыл среди наших друзей на радаре FanlessTech . Это, безусловно, является ключом к его компактным размерам: здесь нет 120/80-мм вентилятора, который мог бы сделать его более квадратным или занять драгоценное место.
HDPlex называют его «самым маленьким в мире блоком питания ATX», хотя я не уверен, что делает его блоком питания ATX, а не чем-то другим. Он предлагает многие функции, которые вы ожидаете от более крупного блока питания ATX, в том числе несколько ключевых, чтобы убедиться, что он не выходит из строя (UVP, OVP, SCP, OPP, OTP).
Вы не собираетесь собирать самый мощный ПК с одним из этих блоков питания внутри. С максимальной выходной мощностью 250 Вт для одного устройства вам будет сложно построить игровой ПК с дискретным графическим процессором, который не превысит предел. Однако у него есть хитрость в рукаве, чтобы сделать его гораздо более стоящим. Два таких блока питания можно комбинировать для увеличения мощности до 500 Вт. Это все еще далеко от многих лучших блоков питания для ПК (открывается в новой вкладке), но требования к высокопроизводительным графическим процессорам в настоящее время действительно экстремальны. Графические процессоры более низкого уровня, такие как 130 Вт RTX 3050 (открывается в новой вкладке), потребляют гораздо меньше энергии. .
Теперь вы можете собрать достойный игровой ПК с бюджетом мощности 500 Вт, обеспечиваемым двумя такими блоками питания. Они настолько малы, что два из них также не займут много места. Возможно, это немного противоречит цели, так как найти корпус, соответствующий их странной удлиненной форме, может быть проблемой с одним устройством, не говоря уже о двух, но я уверен, что некоторые пассивные сборщики ПК уже присматриваются к ним для своих следующих проектов. В любом случае, он определенно поместится в безвентиляторный корпус ПК HDPlex.
Блок питания не соответствует обычной спецификации 80 Plus, к которой мы привыкли, но он чертовски эффективен. Сообщается, что он способен достичь эффективности 94% при полной нагрузке, что ставит его на один уровень с блоками питания 80 Plus Titanium.
Изображение 1 из 4
(Изображение предоставлено HDPlex) (Изображение предоставлено HDPlex) (Изображение предоставлено HDPlex) (Изображение предоставлено HDPlex)
Ваше следующее обновление : Топовые чипы от Intel и AMD
Лучшая материнская плата для игр (откроется в новой вкладке): Подходящие платы
Лучшая видеокарта (откроется в новой вкладке): Ваш идеальный пиксель-пушер ждет
Лучший твердотельный накопитель для игр (откроется в новой вкладке): Получить в игру впереди остальных
Эта эффективность будет особенно важна для такой пассивной конструкции, как эта: более высокая эффективность означает, что меньше энергии теряется в виде тепла, а меньше тепла означает меньшую потребность в рассеивании тепла. Все это делает блок питания более компактным.
Вы можете увидеть аккуратный дизайн HDPlex выше, на странице продукта компании (открывается в новой вкладке), и на относительно тонкой печатной плате размещено множество компонентов.
HDPlex 250W стоит 145 долларов, но его можно будет приобрести только в июне. Очевидно, вы платите за удобство и его компактный корпус, иначе это были бы большие деньги для блока питания мощностью 250 Вт. Тем более, если вы планируете забрать два из них.
Зарегистрируйтесь, чтобы получать лучший контент недели и выгодные игровые предложения, выбранные редакторами.
Свяжитесь со мной, чтобы сообщить о новостях и предложениях от других брендов Future. Получайте от нас электронные письма от имени наших надежных партнеров или спонсоров.
Джейкоб заработал свою первую авторскую запись для своего собственного технического блога в своем родном городе в Уэльсе в 2017 году. После этого он перешел к профессиональному ломанию вещей в качестве писателя аппаратного обеспечения в PCGamesN, где он позже получил командование шкафом для комплектов в качестве редактора аппаратного обеспечения. В настоящее время, будучи старшим редактором аппаратного обеспечения в PC Gamer, он целыми днями пишет о последних разработках в области технологий и игровой индустрии. Однако, когда он не пишет о графических процессорах и процессорах, вы обнаружите, что он пытается уйти как можно дальше от современного мира в диком кемпинге.
Блоки питания для ПК | Компоненты ПК | Игровые ПК
Чистые и надежные блоки питания с рейтингом 80 Plus
Блоки питания серии C
Модульные и полумодульные блоки питания, обеспечивающие всю мощность, необходимую для поддержки любой сборки игрового ПК.
New
C1200 Gold
1200W Gold Fully-Modular ATX 3.0 PSU
$259.99
C1000 Gold
1000W Gold Fully-Modular ATX PSU
$179. 99
C850 Gold
850W Gold Fully-Modular ATX PSU
$149.99
C750 Gold
750W Gold Semi-Modular ATX PSU
$139.99
Sold Out
C750 Bronze
750W Bronze Semi-Modular ATX PSU
$99.99
C650 Gold
650W Gold Fully-Modular ATX PSU
$129.99
C650 Bronze
650W Bronze Semi-Modular ATX PSU
$89.99
C550 Bronze
550W Bronze Semi-Modular ATX PSU
$79.99
PSUs
Мощность для каждого игрока
Next-Gen
C1200 Gold с питанием ATX 3. 0 для максимальной производительности и одним кабелем с 16-контактным разъемом для графических процессоров серии NVIDIA® GeForce RTX™40.
Enthusiast
Gold Блоки питания со стандартными для отрасли функциями и поддержкой большинства графических процессоров NVIDIA® GeForce RTX™ 30 и 40 серий, а также AMD™ Radeon RX 7000 Series.
Base
Блоки питания Bronze для нетребовательных рабочих нагрузок или интегрированные гибридные процессоры и графические процессоры — идеальны для казуальных игр.
Высокая надежность
Высококачественная конструкция, высококачественные материалы, такие как японские конденсаторы, и стабильная производительность делают серию С стабильной, надежной и долговечной.
Освободите место
Серия C имеет меньший форм-фактор для экономии места и больше места для укладки кабелей или других компонентов.
Почему важна эффективность?
Энергия, которая тратится впустую из-за недостаточной эффективности, превращается в тепло. Высокоэффективный блок питания повышает производительность вашего ПК и сводит к минимуму влияние на ваши счета за электроэнергию, поэтому вы можете сэкономить больше для следующей распродажи в Steam.
Не все сборки ПК требуют одинаковой эффективности. Такие компоненты, как GPU и CPU, потребляют больше всего энергии и окажут наибольшее влияние при определении того, какой блок питания подходит для ПК.
Next-Gen
C1200 Gold
ATX 3.0
C1200 Gold обеспечивает надежную работу в будущем и более высокую энергоэффективность, чтобы справляться со значительными скачками мощности от графических процессоров следующего поколения, удерживая до 2-кратного увеличения общей мощности и 3-кратного увеличения мощности графического процессора.
Однокабельное соединение
Одиночный соединительный кабель 12VHPWR обеспечивает более безопасную и простую установку.
Энтузиаст
C1000 Золото | C850 Золото | C750 Золото | C650 Gold
Выберите карту
Блоки питания Enthusiast C-Series подходят для большинства карт серии 40 и всех графических процессоров NVIDIA® GeForce RTX™ 30 Series или AMD™, включая Radeon RX 7000 Series.
Полностью модульная система
Подключайте только те кабели, которые нужны вашей системе, чтобы освободить место в корпусе.
Эффективность и универсальность
Благодаря различной мощности и эффективности уровня Gold блоки питания для энтузиастов готовы к работе с различными сборками.
Работает незаметно
Гидродинамический подшипник обеспечивает бесшумную работу вентилятора даже при высоких нагрузках. Режим Zero Fan отключает его для полной тишины при нагрузке менее 40%.
C1000 Gold
1000W Gold Полностью модулярный ATX PSU
1 Color
$ 179,99
C850 Gold
850 Вт. Модульный блок питания ATX
1 цвет
139 долл. США.99
C650 Gold
Gold Полностью модульный блок питания ATX 650 Вт
1 цвет
129,99 $
Base
C750 Bronze | C650 Бронза | C550 Bronze
Bronze Efficiency
При нагрузке 50 % эффективность преобразования энергии достигает 87 %, что на 2 % выше, чем у 80plus Bronze Standard.